Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Gastrointest Liver Physiol ; 312(2): G153-G163, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27932503

RESUMO

Previous studies have shown that localized delivery of the aquaporin-1 (AQP1) gene to the parotid duct can restore saliva flow in minipigs following irradiation-induced salivary hypofunction. The resulting flow rate and electrochemistry of secreted saliva contradicts current understanding of ductal fluid transport. We hypothesized that changes in expression of ion transport proteins have occurred following AQP1 transfection. We use a mathematical model of ion and fluid transport across the parotid duct epithelial cells to predict the expression profile of ion transporters that are consistent with the experimental measurements of saliva composition and secretion rates. Using a baseline set of parameters, the model reproduces the data for the irradiated, non-AQP1-transfected case. We propose three scenarios which may have occurred after transfection, which differ in the location of the AQP1 gene. The first scenario places AQP1 within nonsecretory cells, and requires that epithelial sodium channel (ENaC) expression is greatly reduced (1.3% of baseline), and ductal bicarbonate concentration is increased from 40.6 to 137.0 mM, to drive water secretion into the duct. The second scenario introduces the AQP1 gene into all ductal cells. The final scenario has AQP1 primarily in the proximal duct cells which secrete water under baseline conditions. We find the change in the remaining cells includes a 95.8% reduction in ENaC expression, enabling us to reproduce all experimental ionic concentrations within 9 mM. These findings provide a mechanistic basis for the observations and will guide the further development of gene transfer therapy for salivary hypofunction. NEW & NOTEWORTHY: Following transfection of aquaporin into the parotid ducts of minipigs with salivary hypofunction, the resulting increase in salivary flow rates contradicts current understanding of ductal fluid transport. We show that the change in saliva electrochemistry and flow rate can be explained by changes in expression of ion transporters in the ductal cell membranes, using a mathematical model replicating a single parotid duct.


Assuntos
Aquaporina 1/metabolismo , Simulação por Computador , Transporte de Íons/fisiologia , Modelos Biológicos , Glândula Parótida/metabolismo , Animais , Aquaporina 1/genética , Regulação da Expressão Gênica , Humanos , Saliva , Transcriptoma , Transfecção
3.
JCI Insight ; 8(24)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-37676726

RESUMO

Sjögren's Disease (SjD) is a systemic autoimmune disease characterized by lymphocytic inflammation of the lacrimal and salivary glands (SG), dry eyes and mouth, and systemic symptoms. SARS-CoV-2 may trigger the development or progression of autoimmune diseases. To test this, we used a mouse model of SARS-CoV-2 infection and convalescent patients' blood and SG in order to understand the development of SjD-like autoimmunity after infection. First, SARS-CoV-2-infected human angiotensin-converting enzyme 2 (ACE2) transgenic mice exhibited decreased salivation, elevated antinuclear antibodies (ANA), and lymphocytic infiltration in the lacrimal and SG. The sera from patients with COVID-19 sera showed increased ANA (i.e., anti-SSA [Sjögren's-syndrome-related antigen A]/anti-Ro52 and anti-SSB [SS-antigen B]/anti-La). Male patients showed elevated anti-SSA compared with female patients, and female patients exhibited diverse ANA patterns. SG biopsies from convalescent COVID-19 patients were microscopically similar to SjD SG with focal lymphocytic infiltrates in 4 of 6 patients and 2 of 6 patients exhibiting focus scores of at least 2. Lastly, monoclonal antibodies produced in recovered patients blocked ACE2/spike interaction and cross-reacted with nuclear antigens. Our study shows a direct association between SARS-CoV-2 and SjD. Hallmark features of SjD-affected SGs were histologically indistinguishable from convalescent COVID-19 patients. The results implicate that SARS-CoV-2 could be an environmental trigger for SjD.


Assuntos
COVID-19 , Síndrome de Sjogren , Humanos , Camundongos , Masculino , Feminino , Animais , Enzima de Conversão de Angiotensina 2/genética , SARS-CoV-2 , Camundongos Transgênicos , Fenótipo
4.
Sci Rep ; 12(1): 18570, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329045

RESUMO

Sjögren's disease (SjD) is a chronic autoimmune sialadenitis resulting in salivary gland hypofunction with dry mouth symptom. Previous studies showed that lysosome-associated membrane protein 3 (LAMP3) overexpression is involved in the development of salivary gland hypofunction associated with SjD. However, the molecular mechanisms are still unclear, and no effective treatment exists to reverse gland function in SjD. Analysis on salivary gland samples from SjD patients showed that salivary gland hypofunction was associated with decreased expression of sodium-potassium-chloride cotransporter-1 (NKCC1) and aquaporin 5 (AQP5), which are membrane proteins involved in salivation. Further studies revealed that LAMP3 overexpression decreased their expression levels by promoting endolysosomal degradation. Additionally, we found that LAMP3 overexpression enhanced gene transfer by increasing internalization of adeno-associated virus serotype 2 (AAV2) via the promoted endolysosomal pathway. Retrograde cannulation of AAV2 vectors encoding AQP1 gene (AAV2-AQP1) into salivary glands induced glandular AQP1 expression sufficient to restore salivary flow in LAMP3-overexpressing mice. LAMP3 could play a critical role in the development of salivary gland hypofunction in SjD by promoting endolysosomal degradation of NKCC1 and AQP5. But it also could enhance AAV2-mediated gene transfer to restore fluid movement through induction of AQP1 expression. These findings suggested that AAV2-AQP1 gene therapy is useful in reversing salivary gland function in SjD patients.

5.
medRxiv ; 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36324812

RESUMO

Objectives: Sjögren's Disease (SjD) is a chronic and systemic autoimmune disease characterized by lymphocytic infiltration and the development of dry eyes and dry mouth resulting from the secretory dysfunction of the exocrine glands. SARS-CoV-2 may trigger the development or progression of autoimmune diseases, as evidenced by increased autoantibodies in patients and the presentation of cardinal symptoms of SjD. The objective of the study was to determine whether SARS-CoV-2 induces the signature clinical symptoms of SjD. Methods: The ACE2-transgenic mice were infected with SARS-CoV-2. SJD profiling was conducted. COVID-19 patients' sera were examined for autoantibodies. Clinical evaluations of convalescent COVID-19 subjects, including minor salivary gland (MSG) biopsies, were collected. Lastly, monoclonal antibodies generated from single B cells of patients were interrogated for ACE2/spike inhibition and nuclear antigens. Results: Mice infected with the virus showed a decreased saliva flow rate, elevated antinuclear antibodies (ANAs) with anti-SSB/La, and lymphocyte infiltration in the lacrimal and salivary glands. Sera of COVID-19 patients showed an increase in ANA, anti-SSA/Ro52, and anti-SSB/La. The male patients showed elevated levels of anti-SSA/Ro52 compared to female patients, and female patients had more diverse ANA patterns. Minor salivary gland biopsies of convalescent COVID-19 subjects showed focal lymphocytic infiltrates in four of six subjects, and 2 of 6 subjects had focus scores >2. Lastly, we found monoclonal antibodies produced in recovered patients can both block ACE2/spike interaction and recognize nuclear antigens. Conclusion: Overall, our study shows a direct association between SARS-CoV-2 and SjD. Hallmark features of SjD salivary glands were histologically indistinguishable from convalescent COVID-19 subjects. The results potentially implicate that SARS-CoV-2 could be an environmental trigger for SjD. Key Messages: What is already known about this subject?SAR-CoV-2 has a tropism for the salivary glands. However, whether the virus can induce clinical phenotypes of Sjögren's disease is unknown.What does this study add?Mice infected with SAR-CoV-2 showed loss of secretory function, elevated autoantibodies, and lymphocyte infiltration in glands.COVID-19 patients showed an increase in autoantibodies. Monoclonal antibodies produced in recovered patients can block ACE2/spike interaction and recognize nuclear antigens.Minor salivary gland biopsies of some convalescent subjects showed focal lymphocytic infiltrates with focus scores.How might this impact on clinical practice or future developments?Our data provide strong evidence for the role of SARS-CoV-2 in inducing Sjögren's disease-like phenotypes.Our work has implications for how patients will be diagnosed and treated effectively.

6.
Lab Invest ; 91(1): 54-62, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20856230

RESUMO

Sjögren's syndrome (SS) involves a chronic, progressive inflammation primarily of the salivary and lacrimal glands leading to decreased levels of saliva and tears that eventually result in dry mouth and dry eye diseases. T(H)17 cell populations secreting IL17A have been shown to have an important function in an increasing number of autoimmune diseases, including SS. In this study, we investigated the function of IL17A on SS development and onset. Adenovirus-5 vectors expressing either IL17R:fragment of crystallization (Fc) fusion protein or LacZ were injected through retrograde cannulation into the salivary glands of SS-susceptible (SS(S)) C57BL/6.NOD-Aec1Aec2 mice between 6 and 8 weeks of age (a pre-disease stage) or 15 and 17 weeks of age (a diseased stage). The mice were subsequently characterized for their SS phenotypes. Mice cannulated with the Ad5-IL17R:Fc viral vector at either 7 or 16 weeks of age exhibited a rapid temporal, yet persistent, decrease in the levels of serum IL17 as well as the overall numbers of CD4+IL17+T cells present in their spleens. Disease profiling indicated that these mice showed decreased lymphocytic infiltrations of their salivary glands, normalization of their antinuclear antibodies repertoire, and increased saliva secretion. In contrast, mice cannulated with the control Ad5-LacZ viral vector did not exhibit similar changes and progressed to the overt disease stage. The capacity of the Ad5-IL17R:Fc-blocking factor to reduce SS pathology in SS(S) mice strongly suggests that IL17 is an important inflammatory cytokine in salivary gland dysfunction. Thus, therapeutic approach targeting IL17 may be effective in preventing glandular dysfunction.


Assuntos
Interleucina-17/metabolismo , Receptores de Interleucina-17/metabolismo , Glândulas Salivares/metabolismo , Síndrome de Sjogren/metabolismo , Adenoviridae/genética , Animais , Anticorpos Antinucleares/sangue , Anticorpos Antinucleares/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Feminino , Citometria de Fluxo , Técnicas de Transferência de Genes , Imuno-Histoquímica , Interleucina-17/sangue , Interleucina-17/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Receptores de Interleucina-17/genética , Glândulas Salivares/imunologia , Síndrome de Sjogren/genética , Síndrome de Sjogren/imunologia , Baço/imunologia , Baço/metabolismo , Baço/patologia , Fatores de Tempo
7.
Nat Med ; 27(5): 892-903, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33767405

RESUMO

Despite signs of infection-including taste loss, dry mouth and mucosal lesions such as ulcerations, enanthema and macules-the involvement of the oral cavity in coronavirus disease 2019 (COVID-19) is poorly understood. To address this, we generated and analyzed two single-cell RNA sequencing datasets of the human minor salivary glands and gingiva (9 samples, 13,824 cells), identifying 50 cell clusters. Using integrated cell normalization and annotation, we classified 34 unique cell subpopulations between glands and gingiva. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral entry factors such as ACE2 and TMPRSS members were broadly enriched in epithelial cells of the glands and oral mucosae. Using orthogonal RNA and protein expression assessments, we confirmed SARS-CoV-2 infection in the glands and mucosae. Saliva from SARS-CoV-2-infected individuals harbored epithelial cells exhibiting ACE2 and TMPRSS expression and sustained SARS-CoV-2 infection. Acellular and cellular salivary fractions from asymptomatic individuals were found to transmit SARS-CoV-2 ex vivo. Matched nasopharyngeal and saliva samples displayed distinct viral shedding dynamics, and salivary viral burden correlated with COVID-19 symptoms, including taste loss. Upon recovery, this asymptomatic cohort exhibited sustained salivary IgG antibodies against SARS-CoV-2. Collectively, these data show that the oral cavity is an important site for SARS-CoV-2 infection and implicate saliva as a potential route of SARS-CoV-2 transmission.


Assuntos
COVID-19/virologia , Boca/virologia , SARS-CoV-2/isolamento & purificação , Saliva/virologia , Enzima de Conversão de Angiotensina 2/análise , Infecções Assintomáticas , COVID-19/etiologia , Humanos , Serina Endopeptidases/análise , Distúrbios do Paladar/etiologia , Distúrbios do Paladar/virologia , Replicação Viral
8.
J Gene Med ; 12(1): 3-10, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19941317

RESUMO

BACKGROUND: Radiation-induced salivary hypofunction is a common side-effect of treatment for head and neck cancers. Patients suffer significant morbidity and there is no suitable conventional therapy. We are conducting a Phase I clinical trial, using a first-generation serotype 5 adenoviral (Ad5) vector encoding human aquaporin-1 (AdhAQP1) to treat such patients. One week after the administration of AdhAQP1 to an enrolled, generally healthy patient, E1-containing adenovirus was detected in parotid saliva. METHODS: The real-time quantitative polymerase chain reaction (PCR) was used to measure the Ad5 E1 gene and AdhAQP1 in saliva and serum. PCR and sequencing were used to characterize viral/vector DNA extracted from saliva. The presence of infectious adenovirus was assessed by the inoculation of A549 cells with aliquots of saliva. Serum Ad5 neutralizing antibodies were measured by the inhibition of 293-cell transduction with an Ad5 vector encoding luciferase. Multiple clinical evaluations were performed. RESULTS: On day 7 after AdhAQP1 delivery, low levels of the Ad5 E1 gene were detected in parotid saliva (82 copies/microl). In addition, significant levels of AdhAQP1 were also detected (1.5 x 10(3) copies/microl). The patient was asymptomatic and subsequent analysis of parotid saliva samples prior to day 7 and after day 7 until day 42 was negative for both virus and vector. No virus or vector was detected in serum at any time. Detailed PCR analyses of DNA extracted from the day 7 parotid saliva sample suggested the absence of a recombination event, and no infectious virus was found. CONCLUSIONS: The patient most likely had a latent Ad5 infection in the targeted parotid gland that was activated after gene transfer and was without clinical consequence.


Assuntos
Adenoviridae/genética , Proteínas E1 de Adenovirus/genética , Técnicas de Transferência de Genes , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Glândula Parótida/metabolismo , Saliva/metabolismo , Aquaporina 1/genética , Sequência de Bases , DNA Viral/análise , DNA Viral/genética , Humanos , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Fatores de Tempo
9.
Mol Ther Methods Clin Dev ; 19: 459-466, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33294494

RESUMO

The loss of salivary gland function caused by radiation therapy of the head and neck or autoimmune disease such as Sjögren's syndrome is a serious condition that affects a patient's quality of life. Due to the combined exocrine and endocrine functions of the salivary gland, gene transfer to the salivary glands holds the potential for developing therapies for disorders of the salivary gland and the expression of therapeutic proteins via the exocrine pathway to the mouth, upper gastrointestinal tract, or endocrine pathway, systemically, into the blood. Recent clinical success with viral vector-mediated gene transfer for the treatment of irradiation-induced damage to the salivary glands has highlighted the need for the development of novel vectors with acinar cell tropism able to result in stable long-term transduction. Previous studies with adeno-associated virus (AAV) focused on the submandibular gland and reported mostly ductal cell transduction. In this study, we have screened AAV vectors for acinar cell tropism in the parotid gland utilizing membrane-tomato floxed membrane-GFP transgenic mice to screen CRE recombinase encoding AAV vectors of different clades to rapidly identify capsid isolates able to transduce salivary gland acinar cells. We determined that AAVRh10 and a novel isolate found as a contaminant of a laboratory stock of simian adenovirus SV15, AAV44.9, are both able to transduce parotid and sublingual acinar cells. Persistence and localization of transduction of these AAVs were tested using vectors encoding firefly luciferase, which was detected 6 months after vector administration. Most luciferase expression was localized to the salivary gland compared to that of distal organs. Transduction resulted in robust secretion of recombinant protein in both blood and saliva. Transduction was species specific, with AAVRh10 having stronger transduction activity in rats compared with AAV44.9 or AAV2 but weaker in human primary salivary gland cells. This work demonstrates efficient transduction of parotid acinar cells by AAV that resulted in secretion of recombinant protein in both serum and saliva.

10.
Sci Rep ; 10(1): 2967, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-32076051

RESUMO

Primary Sjögren's syndrome (pSS) is a chronic autoimmune disease, with only palliative treatments available. Recent work has suggested that increased bone morphogenetic protein 6 (BMP6) expression could alter cell signaling in the salivary gland (SG) and result in the associated salivary hypofunction. We examined the prevalence of elevated BMP6 expression in a large cohort of pSS patients and tested the therapeutic efficacy of BMP signaling inhibitors in two pSS animal models. Increased BMP6 expression was found in the SGs of 54% of pSS patients, and this increased expression was correlated with low unstimulated whole saliva flow rate. In mouse models of SS, inhibition of BMP6 signaling reduced phosphorylation of SMAD1/5/8 in the mouse submandibular glands, and led to a recovery of SG function and a decrease in inflammatory markers in the mice. The recovery of SG function after inhibition of BMP6 signaling suggests cellular plasticity within the salivary gland and a possibility for therapeutic intervention that can reverse the loss of function in pSS.


Assuntos
Receptores de Ativinas Tipo I/antagonistas & inibidores , Proteína Morfogenética Óssea 6/metabolismo , Pirazóis/administração & dosagem , Pirimidinas/administração & dosagem , Quinolinas/administração & dosagem , Glândulas Salivares/patologia , Síndrome de Sjogren/tratamento farmacológico , Receptores de Ativinas Tipo I/metabolismo , Adulto , Idoso , Animais , Proteína Morfogenética Óssea 6/análise , Proteína Morfogenética Óssea 6/genética , Linhagem Celular , Feminino , Voluntários Saudáveis , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Fosforilação/efeitos dos fármacos , Recuperação de Função Fisiológica/efeitos dos fármacos , Saliva/imunologia , Saliva/metabolismo , Glândulas Salivares/efeitos dos fármacos , Glândulas Salivares/metabolismo , Glândulas Salivares/fisiopatologia , Transdução de Sinais/efeitos dos fármacos , Síndrome de Sjogren/imunologia , Síndrome de Sjogren/patologia , Síndrome de Sjogren/fisiopatologia , Proteínas Smad Reguladas por Receptor/metabolismo , Adulto Jovem
11.
medRxiv ; 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33140061

RESUMO

Despite signs of infection, the involvement of the oral cavity in COVID-19 is poorly understood. To address this, single-cell RNA sequencing data-sets were integrated from human minor salivary glands and gingiva to identify 11 epithelial, 7 mesenchymal, and 15 immune cell clusters. Analysis of SARS-CoV-2 viral entry factor expression showed enrichment in epithelia including the ducts and acini of the salivary glands and the suprabasal cells of the mucosae. COVID-19 autopsy tissues confirmed in vivo SARS-CoV-2 infection in the salivary glands and mucosa. Saliva from SARS-CoV-2-infected individuals harbored epithelial cells exhibiting ACE2 expression and SARS-CoV-2 RNA. Matched nasopharyngeal and saliva samples found distinct viral shedding dynamics and viral burden in saliva correlated with COVID-19 symptoms including taste loss. Upon recovery, this cohort exhibited salivary antibodies against SARS-CoV-2 proteins. Collectively, the oral cavity represents a robust site for COVID-19 infection and implicates saliva in viral transmission.

12.
Hum Gene Ther ; 18(2): 142-50, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17328682

RESUMO

Salivary glands (SGs) are promising gene transfer targets with potential clinical applicability. Previous experiments in rodents using recombinant serotype 2 adeno-associated viral (rAAV2) vectors have demonstrated relatively stable transgene-encoded protein levels after SG gene transfer. In the present study, we examine direct SG administration of rAAV2 vectors encoding rhesus macaque erythropoietin (RhEPO) to the parotid glands of nonhuman primates using two different doses (n = 3 per group; 1 x 10(10) or 3 x 10(11) particles/gland, respectively). Gene transfer had no negative effects on general macaque physiology (e.g., weight, complete blood count, and serum chemistry). Macaques were euthanized 6 months after vector administration and complete necropsy and pathology assessments were performed, revealing no vector-related pathological lesions in any of the examined organs. In the high-dose group, RhEPO expression increased quickly (i.e., by week 1) and levels remained relatively stable both in serum and saliva until the end of the study. Serum-to-saliva ratios of RhEPO revealed secretion of the transgene product into the bloodstream, but not to the extent previously observed in mice. Furthermore, the kinetic results were not predicted by those observed in murine SGs. With respect to viral biodistribution, at necropsy vector was found overwhelmingly in the targeted parotid gland ( approximately 100 times more than levels in other tissues, most of which were similar to tissue levels in nontreated animals). We conclude that administration of modest doses of rAAV2 vectors to SGs for therapeutic purposes can be accomplished without significant or permanent injury to the targeted gland or to distant organs of nonhuman primates.


Assuntos
Dependovirus/classificação , Dependovirus/genética , Técnicas de Transferência de Genes , Macaca mulatta , Glândula Parótida/metabolismo , Animais , Contagem de Células Sanguíneas , DNA Recombinante/metabolismo , Eritropoetina/sangue , Vetores Genéticos/administração & dosagem , Vetores Genéticos/farmacocinética , Macaca mulatta/genética , Macaca mulatta/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Saliva/metabolismo , Distribuição Tecidual
13.
J Endocrinol ; 185(3): 363-72, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15930162

RESUMO

Salivary glands (SGs) exhibit several important features which are also common to endocrine glands: self-containment due to a surrounding capsule, highly efficient protein production and the ability to secrete proteins into the bloodstream. We have hypothesized that SGs are potentially useful as gene transfer targets for the correction of inherited monogenetic endocrine disorders. In the present communication, we extend our studies and attempt to test our hypothesis by comparing the efficacy of two commonly used viral vectors and the resulting serum and salivary distribution of transgene encoded hormones. A low dose (5 x10(9) particles) of either an adenoviral serotype 5 (Ad5) vector encoding the human erythropoietin (hEPO) cDNA or an adeno-associated virus sero-type 2 (AAV2) vector encoding either the hEPO or human growth hormone (hGH) cDNA was administered to individual submandibular SGs of Balb/c mice. Serum and salivary hEPO and hGH levels were determined at defined time points. Two additional recombinant viruses encoding enhanced green fluorescence protein (GFP) were also used (AdGFP and AAVGFP) in order to perform immunohistochemical analyses of transgenic protein localization in SG sections post-administration. AAV2 vectors led to stable gene transfer unlike the results with the Ad5 vectors. Indeed, in one mouse we observed hEPO production for a period of two years after administration of AAVhEPO to SGs. hEPO, which is a constitutive pathway secretory protein, was readily secreted into the bloodstream from the SGs, yielding therapeutically adequate serum levels. Conversely, hGH, a regulated secretory pathway protein, was preferentially secreted into saliva. SGs may be an attractive candidate target tissue for gene therapeutics of some monogenetic endocrine deficiency disorders. At present, AAV2 vectors seem particularly useful for such applications, and transgenes encoding constitutive secretory pathway hormones are more suitable for this application with SGs than those encoding regulated secretory pathway hormones.


Assuntos
Eritropoetina/deficiência , Terapia Genética/métodos , Terapia de Reposição Hormonal/métodos , Hormônio do Crescimento Humano/deficiência , Glândula Submandibular/metabolismo , Adenoviridae/genética , Animais , Dependovirus/genética , Eritropoetina/sangue , Eritropoetina/genética , Expressão Gênica , Vetores Genéticos/administração & dosagem , Proteínas de Fluorescência Verde/genética , Hormônio do Crescimento Humano/análise , Hormônio do Crescimento Humano/genética , Humanos , Imuno-Histoquímica/métodos , Camundongos , Camundongos Endogâmicos BALB C , Microscopia de Fluorescência , Saliva/química , Transdução Genética/métodos , Transgenes
14.
Hum Gene Ther ; 24(4): 417-23, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23402345

RESUMO

Therapeutic doses of radiation (RTx) causes dry eye syndrome (DES), dry mouth, and as in other sicca syndromes, they are incurable. The aims of this work are as follows: (a) to evaluate a mouse model of DES induced by clinically relevant doses of radiation, and (b) to evaluate the protective effect of erythropoietin (Epo) in preventing DES. C3H female mice were subjected to five sessions of RTx, with or without pre-RTx retroductal administration of the AdLTR2EF1a-hEPO (AdEpo) vector in the salivary glands (SG), and compared with naïve controls at Day 10 (10d) (8 Gy fractions) and 56 days (56d) (6 Gy fractions) after RTx treatment. Mice were tested for changes in lacrimal glands (LG), tear secretion (phenol red thread), weight, hematocrit (Hct), and markers of inflammation, as well as microvessels and oxidative damage. Tear secretion was reduced in both RTx groups, compared to controls, by 10d. This was also seen at 56d in RTx but not AdEpo+RTx group. Hct was significantly higher in all AdEpo+RTx mice at 10d and 56d. Corneal epithelium was significantly thinner at 10d in the RTx group compared with AdEpo+RTx or the control mice. There was a significant reduction at 10d in vascular endothelial growth factor (VEGF)-R2 in LG in the RTx group that was prevented in the AdEpo+RTx group. In conclusion, RTx is able to induce DES in mice. AdEpo administration protected corneal epithelia and resulted in some recovery of LG function, supporting the value of further studies using gene therapy for extraglandular diseases.


Assuntos
Adenoviridae/genética , Síndromes do Olho Seco/terapia , Epitélio Corneano/metabolismo , Eritropoetina/genética , Lesões Experimentais por Radiação/terapia , Glândulas Salivares/metabolismo , Animais , Síndromes do Olho Seco/metabolismo , Síndromes do Olho Seco/patologia , Epitélio Corneano/patologia , Eritropoetina/metabolismo , Feminino , Terapia Genética , Vetores Genéticos , Aparelho Lacrimal/metabolismo , Camundongos , Camundongos Endogâmicos C3H , Lesões Experimentais por Radiação/metabolismo , Lesões Experimentais por Radiação/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
15.
Arthritis Res Ther ; 14(4): R172, 2012 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-22827855

RESUMO

INTRODUCTION: Sjögren's syndrome (SjS) is a systemic autoimmune disease characterized by decreased salivary and lacrimal gland secretions, resulting in severe dry mouth and dry eyes. Recent studies have suggested that TH17 cells and its signature cytokine IL-17 are involved in the underlying pathogenic mechanisms leading to destructive inflammation and autoimmunity. In the present study, we examined whether IL-27, a natural inhibitor of TH17 activity, could down-regulate or reverse SjS in C57BL/6.NOD-Aec1Aec2 mice, a model of primary-SjS. METHODS: Recombinant serotype 2 adeno-associated viral (AAV2) vectors expressing either IL-27 (rAAV2-IL27) or LacZ (rAAV2-LacZ) were injected into 6 or 14 week-old C57BL/6.NOD-Aec1Aec2 mice. Changes in IL-27, IL-17, and IL-10 cytokine levels in peripheral blood were determined by ELISAs, while flow cytometry analyses were used to quantify cytokine-positive splenocytes. Histological assessment of salivary glands, anti-nuclear autoantibody (ANA) staining, and stimulated saliva flow rates were used to profile SjS disease severity. RESULTS: Mice systemically treated with intravenous rAAV2-IL27 injections at either 6 or 14 weeks of age exhibited long-term elevated levels of serum IL-27 with concomitantly reduced levels of IL-17 compared with sera from mice injected with rAAV2-LacZ or saline out to 20 weeks post-inoculation. Most importantly, disease profiles revealed that rAAV2-IL27 treatment had little effect on lymphocytic focus (LF) scores, but resulted in structural changes in LF, lower titers of ANAs with changes in staining patterns, and a less severe clinical disease as determined by saliva flow rates. CONCLUSIONS: These data support the concept that IL-27, when provided exogenously, can induce a suppressive effect on SjS development and thus may be an effective therapeutic agent for regulating TH17 pro-inflammatory activity in autoimmune diseases where the TH17 system has been shown to play an important role in their pathogenesis.


Assuntos
Terapia Genética/métodos , Interleucina-27/genética , Interleucina-27/uso terapêutico , Síndrome de Sjogren/genética , Síndrome de Sjogren/terapia , Animais , Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Doenças Autoimunes/terapia , Células HEK293 , Humanos , Interleucina-27/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Síndrome de Sjogren/imunologia
16.
PLoS One ; 6(5): e19962, 2011 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-21589878

RESUMO

INTRODUCTION: Intercellular adhesion molecule-1 (ICAM-1) is involved in migration and co-stimulation of T and B cells. Membrane bound ICAM-1 is over expressed in the salivary glands (SG) of Sjögren's syndrome (SS) patients and has therefore been proposed as a potential therapeutic target. To test the utility of ICAM-1 as a therapeutic target, we used local gene therapy in Non Obese Diabetic (NOD) mice to express soluble (s)ICAM-1 to compete with membrane bound ICAM-1 for binding with its receptor. Therapy was given prior to and just after the influx of immune cells into the SG. METHODS: A recombinant serotype 2 adeno associated virus (rAAV2) encoding ICAM-1/Fc was constructed and its efficacy tested in the female NOD mice after retrograde instillation in SG at eight (early treatment) and ten (late treatment) weeks of age. SG inflammation was evaluated by focus score and immunohistochemical quantification of infiltrating cell types. Serum and SG tissue were analyzed for immunoglobulins (Ig). RESULTS: Early treatment with ICAM-1/Fc resulted in decreased average number of inflammatory foci without changes in T and B cell composition. In contrast, late treated mice did not show any change in focus scores, but immunohistochemical staining showed an increase in the overall number of CD4+ and CD8+ T cells. Moreover, early treated mice showed decreased IgM within the SGs, whereas late treated mice had increased IgM levels, and on average higher IgG and IgA. CONCLUSIONS: Blocking the ICAM-1/LFA-1 interaction with sICAM-1/Fc may result in worsening of a SS like phenotype when infiltrates have already formed within the SG. As a treatment for human SS, caution should be taken targeting the ICAM-1 axis since most patients are diagnosed when inflammation is clearly present within the SG.


Assuntos
Molécula 1 de Adesão Intercelular/metabolismo , Síndrome de Sjogren/metabolismo , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Feminino , Camundongos , Camundongos Endogâmicos NOD , Saliva/metabolismo , Síndrome de Sjogren/imunologia
17.
Arthritis Res Ther ; 12(6): R220, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21182786

RESUMO

INTRODUCTION: Sjögren's syndrome (SS) involves a chronic, progressive inflammation primarily of the salivary and lacrimal glands leading to decreased levels of saliva and tears resulting in dry mouth and dry eye diseases. Seminal findings regarding TH17 cell populations that secrete predominantly interleukin (IL)-17A have been shown to play an important role in an increasing number of autoimmune diseases, including SS. In the present study, we investigated the function of IL-17A on the development and onset of SS. METHODS: Adenovirus serotype 5 (Ad5) vectors expressing either IL-17A or LacZ were infused via retrograde cannulation into the salivary glands of C57BL/6J mice between 6 and 8 weeks of age or between 15 and 17 weeks of age. The mice were characterized for SS phenotypes. RESULTS: Disease profiling indicated that SS-non-susceptible C57BL/6J mice whose salivary glands received the Ad5-IL17A vector developed a SS-like disease profile, including the appearance of lymphocytic foci, increased cytokine levels, changes in antinuclear antibody profiles, and temporal loss of saliva flow. CONCLUSIONS: Induction of SS pathology by IL-17A in SS-non-susceptible mice strongly suggests that IL-17A is an important inflammatory cytokine in salivary gland dysfunction. Thus, localized anti-IL17 therapy may be effective in preventing glandular dysfunction.


Assuntos
Interleucina-17/imunologia , Glândulas Salivares/imunologia , Síndrome de Sjogren/imunologia , Células Th17/imunologia , Adenoviridae , Animais , Anticorpos Antinucleares/imunologia , Separação Celular , Citometria de Fluxo , Técnicas de Transferência de Genes , Vetores Genéticos , Imuno-Histoquímica , Interleucina-17/genética , Interleucina-17/metabolismo , Interleucina-6/imunologia , Interleucina-6/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de Oligonucleotídeos , Glândulas Salivares/patologia , Síndrome de Sjogren/patologia , Transdução Genética
18.
Oral Oncol ; 46(1): 4-8, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19892587

RESUMO

A significant long-term side effect of radiation therapy for head and neck cancers is xerostomia, a dry mouth, due to salivary gland damage. Despite continuing efforts to eliminate this problem, many patients continue to suffer. This brief review describes our efforts to develop a gene transfer approach, employing the aquaporin-1 cDNA, to treat patients with existing radiation-induced salivary hypofunction. A Phase I/II clinical trial, using a recombinant adenoviral vector to mediate gene transfer, is currently underway.


Assuntos
Aquaporina 1/uso terapêutico , Técnicas de Transferência de Genes , Lesões por Radiação/terapia , Xerostomia/terapia , Aquaporina 1/genética , Feminino , Humanos , Masculino , Lesões por Radiação/genética , Xerostomia/etiologia , Xerostomia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA