Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 111(12): 2499-507, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24942535

RESUMO

The development of point-of-need (PON) diagnostics for viruses has the potential to prevent pandemics and protects against biological warfare threats. Here we discuss the approach of using aqueous two-phase systems (ATPSs) to concentrate biomolecules prior to the lateral-flow immunoassay (LFA) for improved viral detection. In this paper, we developed a rapid PON detection assay as an extension to our previous proof-of-concept studies which used a micellar ATPS. We present our investigation of a more rapid polymer-salt ATPS that can drastically improve the assay time, and show that the phase containing the concentrated biomolecule can be extracted prior to macroscopic phase separation equilibrium without affecting the measured biomolecule concentration in that phase. We could therefore significantly decrease the time of the diagnostic assay with an early extraction time of just 30 min. Using this rapid ATPS, the model virus bacteriophage M13 was concentrated between approximately 2 and 10-fold by altering the volume ratio between the two phases. As the extracted virus-rich phase contained a high salt concentration which destabilized the colloidal gold indicator used in LFA, we decorated the gold nanoprobes with polyethylene glycol (PEG) to provide steric stabilization, and used these nanoprobes to demonstrate a 10-fold improvement in the LFA detection limit. Lastly, a MATLAB script was used to quantify the LFA results with and without the pre-concentration step. This approach of combining a rapid ATPS with LFA has great potential for PON applications, especially as greater concentration-fold improvements can be achieved by further varying the volume ratio. Biotechnol. Bioeng. 2014;111: 2499-2507. © 2014 Wiley Periodicals, Inc.


Assuntos
Imunoensaio/métodos , Polietilenoglicóis/química , Cloreto de Sódio/química , Vírus/isolamento & purificação , Bacteriófago M13 , Coloides , Ouro , Limite de Detecção , Técnicas de Sonda Molecular , Nanoestruturas , Cultura de Vírus , Vírus/química
2.
Anal Bioanal Chem ; 398(7-8): 2955-61, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20865404

RESUMO

Availability of a rapid, accurate, and reliable point-of-care (POC) device for detection of infectious agents and pandemic pathogens, such as swine-origin influenza A (H1N1) virus, is crucial for effective patient management and outbreak prevention. Due to its ease of use, rapid processing, and minimal power and laboratory equipment requirements, the lateral-flow (immuno)assay (LFA) has gained much attention in recent years as a possible solution. However, since the sensitivity of LFA has been shown to be inferior to that of the gold standards of pathogen detection, namely cell culture and real-time PCR, LFA remains an ineffective POC assay for preventing pandemic outbreaks. A practical solution for increasing the sensitivity of LFA is to concentrate the target agent in a solution prior to the detection step. In this study, an aqueous two-phase micellar system comprised of the nonionic surfactant Triton X-114 was investigated for concentrating a model virus, namely bacteriophage M13 (M13), prior to LFA. The volume ratio of the two coexisting micellar phases was manipulated to concentrate M13 in the top, micelle-poor phase. The concentration step effectively improved the M13 detection limit of the assay by tenfold from 5 × 10(8) plaque forming units (pfu)/mL to 5 × 10(7) pfu/mL. In the future, the volume ratio can be further manipulated to yield a greater concentration of a target virus and further decrease the detection limits of the LFA.


Assuntos
Bacteriófago M13/isolamento & purificação , Imunoensaio/métodos , Polietilenoglicóis/química , Humanos , Micelas , Octoxinol
3.
Lab Chip ; 14(16): 3021-8, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-24950897

RESUMO

The lateral-flow immunoassay (LFA) is an inexpensive point-of-care (POC) paper-based diagnostic device with the potential to rapidly detect disease biomarkers in resource-poor settings. Although LFA is inexpensive, easy to use, and requires no laboratory equipment, it is limited by its sensitivity, which remains inferior to that of gold standard laboratory-based assays. Our group is the only one to have previously utilized various aqueous two-phase systems (ATPSs) to enhance LFA detection. In those studies, the sample was concentrated by an ATPS in a test tube and could only be applied to LFA after it had been extracted manually. Here, we bypass the extraction step by seamlessly integrating a polyethylene glycol-potassium phosphate ATPS with downstream LFA detection in a simple, inexpensive, power-free, and portable all-in-one diagnostic device. We discovered a new phenomenon in which the target biomarkers simultaneously concentrate as the ATPS solution flows through the paper membranes, and our device features a 3-D paper well that was designed to exploit this phenomenon. Studies with this device, which were performed at room temperature in under 25 min, demonstrated a 10-fold improvement in the detection limit of a model protein, transferrin. Our next-generation LFA technology is rapid, affordable, easy-to-use, and can be applied to existing LFA products, thereby providing a new platform for revolutionizing the current state of disease diagnosis in resource-poor settings.


Assuntos
Biomarcadores/análise , Imunoensaio/instrumentação , Imunoensaio/métodos , Papel , Desenho de Equipamento , Limite de Detecção , Sistemas Automatizados de Assistência Junto ao Leito , Polietilenoglicóis/química
4.
Ann Biomed Eng ; 42(11): 2322-32, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24874602

RESUMO

The lateral-flow immunoassay (LFA) is a well-established point-of-care detection assay that is rapid, inexpensive, easy to use, and portable. However, its sensitivity is lower than that of traditional lab-based assays. Previously, we improved the sensitivity of LFA by concentrating the target biomolecules using aqueous two-phase systems (ATPSs) prior to their detection. In this study, we report the first-ever utilization of dextran-coated gold nanoprobes (DGNPs) as the colorimetric indicator for LFA. In addition, the DGNPs are the key component in our pre-concentration process, where they remain stable and functional in the high salt environment of our ATPS solution, capture the target protein with conjugated antibodies, and allow the rapid concentration of the target protein in our ATPS for use in the subsequent LFA detection step. By combining this pre-concentration step with LFA, the detection limit of LFA for a model protein was improved by 10-fold. We further improved our ATPS from previous studies by enabling phase separation at room temperature in 30 min. By using DGNPs for the concentration and detection of protein biomarkers in the sequential combination of the ATPS and LFA steps, we move closer to developing an effective protein detection assay which uses no power or lab-based equipment.


Assuntos
Anticorpos/química , Dextranos/química , Ouro/química , Nanopartículas Metálicas/química , Transferrina/análise , Anticorpos/imunologia , Biomarcadores/análise , Citratos/química , Imunoensaio/instrumentação , Fosfatos/química , Polietilenoglicóis/química , Compostos de Potássio/química , Transferrina/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA