Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Inflamm Res ; 71(5-6): 641-652, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35347345

RESUMO

OBJECT: Phosphatidylserine-containing liposomes (PSLs) can mimic the immunomodulatory effects of apoptotic cells by binding to the phosphatidylserine receptors of macrophages. Sodium butyrate, an antiinflammatory short-chain fatty acid, is known to facilitate the M2 polarization of macrophages. This study aimed to investigate the effect of sodium butyrate on PSLs-induced macrophage polarization. METHODS: PSLs physical properties and cellular uptake tests, reverse transcription-quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, immunofluorescence staining, and flow cytometry analysis were performed to assess the polarization-related indicators of M1/M2 macrophages. RESULTS: The results showed that sodium butyrate did not affect the size and cellular uptake of PSLs. For M1 macrophage polarization, sodium butyrate significantly intensified the antiinflammatory function of PSLs, inhibiting LPS-induced proinflammatory genes expression, cytokines and enzyme release (tumor necrosis factor-alpha, interleukin (IL)-1ß, IL-6, and inducible nitric oxide synthase), as well as CD86 (M1 marker) expression. In addition to the enhancing effect of antiinflammation, sodium butyrate also promoted PSL-induced M2 macrophages polarization, especially elevated thymus and activation-regulated chemokine (TARC) and arginase-1 (Arg-1) enzyme levels which are involved in tissue repair. CONCLUSION: Sodium butyrate enhanced antiinflammatory properties and M2-polarization inducing effect of PSLs. Therefore, sodium butyrate may represent a novel approach to enhance PSL-induced macrophage polarization.


Assuntos
Lipossomos , Fosfatidilserinas , Anti-Inflamatórios/farmacologia , Ácido Butírico/metabolismo , Ácido Butírico/farmacologia , Lipossomos/metabolismo , Lipossomos/farmacologia , Ativação de Macrófagos , Macrófagos , Fosfatidilserinas/metabolismo , Fosfatidilserinas/farmacologia
2.
Dent Mater J ; 43(2): 276-285, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38447980

RESUMO

Premixed calcium silicate cements (pCSCs) contain vehicles which endow fluidity and viscosity to CSCs. This study aimed to investigate the effects of three vehicles, namely, polyethylene glycol (PEG), propylene glycol (PG), and dimethyl sulfoxide (DMSO), on the physicochemical properties and biocompatibility of pCSCs. The setting time, solubility, expansion rate, and mechanical strength of the pCSCs were evaluated, and the formation of calcium phosphate precipitates was assessed in phosphate-buffered saline (PBS). The effects of pCSC extracts on the osteogenic differentiation of mesenchymal stem cells (MSCs) were investigated. Finally, the tissue compatibility of pCSCs in rat femurs was observed. CSC containing PEG (CSC-PEG) exhibited higher solubility and setting time, and CSC-DMSO showed the highest expansion rate and mechanical strength. All pCSCs generated calcium phosphate precipitates. The extract of CSC-PG induced the highest expressions of osteogenic markers along with the greatest calcium deposites. When implanted in rat femurs, CSC-PEG was absorbed considerably, whereas CSC-PG remained relatively unaltered inside the femur.


Assuntos
Dimetil Sulfóxido , Osteogênese , Teste de Materiais , Compostos de Cálcio/farmacologia , Compostos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Fosfatos de Cálcio/química , Silicatos/farmacologia , Silicatos/química , Cálcio , Cimento de Silicato/química , Cimentos Dentários/farmacologia , Cimentos Dentários/química
3.
Biomater Sci ; 11(4): 1358-1372, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36594560

RESUMO

The control of macrophage polarization is important in bone tissue regeneration such as osseointegration. In this study, a coating method was developed to improve the osseointegration of titanium (Ti) implants by generating an immunomodulatory effect. The surface of the Ti discs was coated with a poly(lactide-co-glycolide)(PLGA) polymer, phosphatidylserine (PS), and arginine-glycine-aspartic acid (RGD) peptide conjugated phospholipid. In in vitro assay using mouse bone marrow-derived macrophages (BMDMs), the most significant expression of the M2 marker genes (Arg-1, YM-1, FIZZ1) and CD206, an M2 surface marker, was obtained with coatings containing 6 mol% RGD conjugates and phospholipids consisting of 50 mol% PS. The M2-inducing effect of RGD and PS was also verified in rat femurs where coated Ti rods were implanted. The RGD and PS coating significantly enhanced the osseointegration of the Ti implants. Moreover, a biomechanical push-out test showed that the RGD and PS coating increased the interfacial binding force between the bone and implants. These results indicate that PS and RGD can be applied to the solid surface of implantable biomedical devices to improve immunomodulation and tissue regeneration.


Assuntos
Osseointegração , Titânio , Ratos , Camundongos , Animais , Titânio/farmacologia , Fosfatidilserinas/farmacologia , Ácido Aspártico , Materiais Revestidos Biocompatíveis/farmacologia , Oligopeptídeos/farmacologia , Propriedades de Superfície
4.
Biomaterials ; 279: 121239, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34753037

RESUMO

Phosphatidylserine-containing liposomes (PSLs) can mimic the anti-inflammatory effects of apoptotic cells by binding to the phosphatidylserine receptors of macrophages. MGF-E8, a bridge molecule between phosphatidylserine and macrophages, can promote M2 polarization by activating macrophage integrin with its arginine-glycine-aspartic acid (RGD) motif. In this study, to mimic MGF-E8, PSLs presenting RGD peptide (RGD-PSLs) were prepared, and their immunomodulatory effects on macrophages and the bone tissue regeneration of rat calvarial defects were investigated. RGD peptides enhanced the phagocytosis of PSLs by macrophages, especially when the PSLs contained 3% RGD. RGD-PSLs were also more effective than PSLs for the suppression of lipopolysaccharide-induced gene expression of proinflammatory cytokines (i.e., IL-1ß, IL-6, and TNF-α) as well as CD86 (M1 marker) expression. Furthermore, RGD promoted PSL-induced M2 polarization: 3%-RGD-PSLs significantly enhanced the mRNA expression of Arg-1, FIZZ1, and YM-1, as well as CD206 (M2 marker) expression. In a calvarial defect model, a significant increase in M2 with a decrease in M1 macrophages was observed with 3%-RGD-PSL treatment compared with the effects of PSLs alone. Finally, new bone formation was also accelerated by 3%-RGD-PSLs. Thus, these results suggest that the intensive immunomodulatory effect of RGD-PSLs led to the enhancement of bone tissue regeneration.


Assuntos
Lipossomos , Fosfatidilserinas , Animais , Regeneração Óssea , Macrófagos , Oligopeptídeos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA