Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Microbiol Biotechnol ; 34(7): 1530-1543, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-38973389

RESUMO

With an increase in the commercialization of bioplastics, the importance of screening for plastic-degrading strains and microbes has emerged. Conventional methods for screening such strains are time-consuming and labor-intensive. Therefore, we suggest a method for quickly and effectively screening plastic-degrading microbial strains through dual esterase assays for soil and isolated strains, using p-nitrophenyl alkanoates as substrates. To select microbe-abundant soil, the total amount of phospholipid fatty acids (PLFAs) included in each soil sample was analyzed, and esterase assays were performed for each soil sample to compare the esterase activity of each soil. In addition, by analyzing the correlation coefficients and sensitivity between the amount of PLFAs and the degree of esterase activity according to the substrate, it was confirmed that substrate pNP-C2 is the most useful index for soil containing several microbes having esterase activity. In addition, esterase assays of the isolated strains allowed us to select the most active strain as the degrading strain, and 16S rRNA results confirmed that it was Bacillus sp. N04 showed the highest degradation activity for polybutylene succinate (PBS) as measured in liquid culture for 7 days, with a degradation yield of 99%. Furthermore, Bacillus sp. N04 showed degradation activity against various bioplastics. We propose the dual application of p-nitrophenyl alkanoates as an efficient method to first select the appropriate soil and then to screen for plastic-degrading strains in it, and conclude that pNP-C2 in particular, is a useful indicator.


Assuntos
Biodegradação Ambiental , Esterases , Nitrofenóis , Microbiologia do Solo , Nitrofenóis/metabolismo , Esterases/metabolismo , Solo/química , Bactérias/metabolismo , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/classificação , RNA Ribossômico 16S/genética , Ácidos Graxos/metabolismo , Bacillus/metabolismo , Bacillus/genética , Bacillus/isolamento & purificação , Fosfolipídeos/metabolismo , Plásticos Biodegradáveis/metabolismo
2.
Int J Biol Macromol ; 266(Pt 2): 131332, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574905

RESUMO

Polyhydroxyalkanoates (PHAs) are promising alternatives to existing petrochemical-based plastics because of their bio-degradable properties. However, the limited structural diversity of PHAs has hindered their application. In this study, high mole-fractions of Poly (39 mol% 3HB-co-17 mol% 3 HV-co-44 mol% 4 HV) and Poly (25 mol% 3HB-co-75 mol% 5 HV) were produced from 4- hydroxyvaleric acid and 5-hydroxyvaleric acid, using Cupriavidus necator PHB-4 harboring the gene phaCBP-M-CPF4 with modified sequences. In addition, the complex toxicity of precursor mixtures was tested, and it was confirmed that the engineered C. necator was capable of synthesizing Poly (32 mol% 3HB-co-11 mol% 3 HV-co-25 mol% 4 HV-co-32 mol% 5 HV) at low mixture concentrations. Correlation analyses of the precursor ratio and the monomeric mole fractions indicated that each mole fractions could be precisely controlled using the precursor proportion. Physical property analysis confirmed that Poly (3HB-co-3 HV-co-4 HV) is a rubber-like amorphous polymer and Poly (3HB-co-5 HV) has a high tensile strength and elongation at break. Poly (3HB-co-3 HV-co-4 HV-co-5 HV) had a much lower glass transition temperature than the co-, terpolymers containing 3 HV, 4 HV and 5 HV. This study expands the range of possible physical properties of PHAs and contributes to the realization of custom PHA production by suggesting a method for producing PHAs with various physical properties through mole-fraction control of 3 HV, 4 HV and 5 HV.


Assuntos
Cupriavidus necator , Poli-Hidroxialcanoatos , Cupriavidus necator/metabolismo , Cupriavidus necator/genética , Poli-Hidroxialcanoatos/biossíntese , Poli-Hidroxialcanoatos/química , Ácido 3-Hidroxibutírico/química , Ácido 3-Hidroxibutírico/biossíntese , Ácidos Pentanoicos/metabolismo , Ácidos Pentanoicos/química , Poliésteres/química , Poliésteres/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA