Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Clin Infect Dis ; 60(5): 797-803, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25352588

RESUMO

Enterovirus 71 (EV71) and coxsackieviruses are the major causative agents of hand, foot, and mouth disease (HFMD) outbreaks worldwide and have a significant socioeconomic impact, particularly in Asia. Formalin-inactivated (FI) EV71 vaccines evaluated in human clinical trials in China, Taiwan, and Singapore were found to be safe and to elicit strong neutralizing antibody responses against EV71 currently circulating in Asia. The results from 3 different phase 3 clinical trials performed in young children (6-60 months) indicate that the efficacy of FI-EV71 vaccines is >90% against EV71-related HFMDs and >80% against EV71-associated serious diseases, but the vaccines did not protect against coxsackievirus A16 infections. Here we discuss the critical factors affecting EV71 vaccine product registration, including clinical epidemiology, antigenic shift issues in cross-protection and vaccine strain selection, standardized animal models for potency testing, and cost-effective manufacturing processes for potential incorporation of FI-EV71 vaccine into Expanded Programme on Immunization vaccines.


Assuntos
Enterovirus Humano A/imunologia , Doença de Mão, Pé e Boca/prevenção & controle , Doença de Mão, Pé e Boca/virologia , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Variação Antigênica , Ensaios Clínicos Fase III como Assunto , Proteção Cruzada , Modelos Animais de Doenças , Doença de Mão, Pé e Boca/epidemiologia , Humanos , Resultado do Tratamento , Vacinas Virais/isolamento & purificação
2.
J Virol ; 88(20): 11658-70, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25078697

RESUMO

Enterovirus 71 (EV71), a positive-stranded RNA virus, is the major cause of hand, foot, and mouth disease (HFMD) with severe neurological symptoms. Antiviral type I interferon (alpha/beta interferon [IFN-α/ß]) responses initiated from innate receptor signaling are inhibited by EV71-encoded proteases. It is less well understood whether EV71-induced apoptosis provides a signal to activate type I interferon responses as a host defensive mechanism. In this report, we found that EV71 alone cannot activate Toll-like receptor 9 (TLR9) signaling, but supernatant from EV71-infected cells is capable of activating TLR9. We hypothesized that TLR9-activating signaling from plasmacytoid dendritic cells (pDCs) may contribute to host defense mechanisms. To test our hypothesis, Flt3 ligand-cultured DCs (Flt3L-DCs) from both wild-type (WT) and TLR9 knockout (TLR9KO) mice were infected with EV71. More viral particles were produced in TLR9KO mice than by WT mice. In contrast, alpha interferon (IFN-α), monocyte chemotactic protein 1 (MCP-1), tumor necrosis factor-alpha (TNF-α), IFN-γ, interleukin 6 (IL-6), and IL-10 levels were increased in Flt3L-DCs from WT mice infected with EV71 compared with TLR9KO mice. Seven-day-old TLR9KO mice infected with a non-mouse-adapted EV71 strain developed neurological lesion-related symptoms, including hind-limb paralysis, slowness, ataxia, and lethargy, but WT mice did not present with these symptoms. Lung, brain, small intestine, forelimb, and hind-limb tissues collected from TLR9KO mice exhibited significantly higher viral loads than equivalent tissues collected from WT mice. Histopathologic damage was observed in brain, small intestine, forelimb, and hind-limb tissues collected from TLR9KO mice infected with EV71. Our findings demonstrate that TLR9 is an important host defense molecule during EV71 infection. Importance: The host innate immune system is equipped with pattern recognition receptors (PRRs), which are useful for defending the host against invading pathogens. During enterovirus 71 (EV71) infection, the innate immune system is activated by pathogen-associated molecular patterns (PAMPs), which include viral RNA or DNA, and these PAMPs are recognized by PRRs. Toll-like receptor 3 (TLR3) and TLR7/8 recognize viral nucleic acids, and TLR9 senses unmethylated CpG DNA or pathogen-derived DNA. These PRRs stimulate the production of type I interferons (IFNs) to counteract viral infection, and they are the major source of antiviral alpha interferon (IFN-α) production in pDCs, which can produce 200- to 1,000-fold more IFN-α than any other immune cell type. In addition to PAMPs, danger-associated molecular patterns (DAMPs) are known to be potent activators of innate immune signaling, including TLR9. We found that EV71 induces cellular apoptosis, resulting in tissue damage; the endogenous DNA from dead cells may activate the innate immune system through TLR9. Therefore, our study provides new insights into EV71-induced apoptosis, which stimulates TLR9 in EV71-associated infections.


Assuntos
Enterovirus Humano A/isolamento & purificação , Infecções por Enterovirus/prevenção & controle , Receptor Toll-Like 9/fisiologia , Animais , Sequência de Bases , Células Cultivadas , Citocinas/metabolismo , Primers do DNA , Enterovirus Humano A/fisiologia , Ensaio de Imunoadsorção Enzimática , Interferon Tipo I/biossíntese , Camundongos , Camundongos Knockout , NF-kappa B/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptor Toll-Like 9/genética , Replicação Viral
3.
Clin Dev Immunol ; 2012: 831282, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23008736

RESUMO

Enterovirus 71 (EV71) and coxsackievirus A16 (CVA16) are major causative agents of hand, foot, and mouth diseases (HFMDs), and EV71 is now recognized as an emerging neurotropic virus in Asia. Effective medications and/or prophylactic vaccines against HFMD are not available. The current results from mouse immunogenicity studies using in-house standardized RD cell virus neutralization assays indicate that (1) VP1 peptide (residues 211-225) formulated with Freund's adjuvant (CFA/IFA) elicited low virus neutralizing antibody response (1/32 titer); (2) recombinant virus-like particles produced from baculovirus formulated with CFA/IFA could elicit good virus neutralization titer (1/160); (3) individual recombinant EV71 antigens (VP1, VP2, and VP3) formulated with CFA/IFA, only VP1 elicited antibody response with 1/128 virus neutralization titer; and (4) the formalin-inactivated EV71 formulated in alum elicited antibodies that cross-neutralized different EV71 genotypes (1/640), but failed to neutralize CVA16. In contrast, rabbits antisera could cross-neutralize strongly against different genotypes of EV71 but weakly against CVA16, with average titers 1/6400 and 1/32, respectively. The VP1 amino acid sequence dissimilarity between CVA16 and EV71 could partially explain why mouse antibodies failed to cross-neutralize CVA16. Therefore, the best formulation for producing cost-effective HFMD vaccine is a combination of formalin-inactivated EV71 and CAV16 virions.


Assuntos
Anticorpos Antivirais/imunologia , Proteínas do Capsídeo/imunologia , Enterovirus Humano A/imunologia , Infecções por Enterovirus/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Proteínas do Capsídeo/química , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Infecções por Enterovirus/prevenção & controle , Infecções por Enterovirus/virologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/imunologia , Coelhos , Rabdomiossarcoma/imunologia , Rabdomiossarcoma/virologia , Vacinas Sintéticas , Células Vero , Carga Viral/imunologia , Proteínas Estruturais Virais/imunologia , Vacinas Virais/farmacologia , Vírion/imunologia
4.
Pharm Res ; 26(8): 1856-62, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19415466

RESUMO

PURPOSE: To enhance the water affinity of W/O emulsion-adjuvanted vaccines, we used three bioresorbable polymers named PEG-b-PLA, PEG-b-PCL, and PEG-b-PLACL as hydrophilic emulsifier to stabilize the interfaces between the oily Montanide ISA 51 adjuvant and the antigen media. METHODS: Polymers were synthesized by ring-opening polymerization of lactide and/or epsilon-caprolactone in the presence of monomethoxy PEG. (1)H NMR and GPC data showed that obtained polymers consisted of 70 wt.% hydrophilic PEG block and 30 wt.% lipophilic PLA, PCL, PLACL block with molecular weights of 7,000. RESULTS: The polymer-stabilized ISA51 emulsions have high affinity to water, such that the stock of antigen-encapsulating emulsion could be re-dispersed into PBS before injection, thus yielding stable and injectable W/O/W emulsion nanoparticles. Immunogenicity studies showed that PEG-b-PLACL/ISA51/PBS-formulated ovalbumin with only 5% of ISA51 oily adjuvant could induce the same level of antibody titers as those induced by PBS/ISA51-formulated ovalbumin. CONCLUSIONS: The novel multi-phase emulsions increase fluidity and conceptually diminish local reactions with respect to the W/O type vaccines produced from the same oil. These features are of great interest for applications in candidate vaccine delivery, especially for further optimization of alternative immunization routes, such as intramuscular, transdermal or mucosal administration.


Assuntos
Adjuvantes Imunológicos , Emulsões , Polímeros/química , Animais , Cromatografia em Gel , Ensaio de Imunoadsorção Enzimática , Feminino , Espectroscopia de Ressonância Magnética , Camundongos , Camundongos Endogâmicos BALB C
5.
Biomed Res Int ; 2014: 878139, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25243194

RESUMO

Enterovirus71 (EV71) is now recognized as an emerging neurotropic virus in Asia and one major causative agent of hand-foot-mouth diseases (HFMD). However potential animal models for vaccine development are limited to young mice. In this study, we used an adeno-associated virus (AAV) vector to introduce the human EV71 receptors P-selectin glycoprotein ligand-1 (hPSGL1) or a scavenger receptor class-B member-2 (hSCARB2) into adult ICR mice to change their susceptibility to EV71 infection. Mice were administered AAV-hSCARB2 or AAV-hPSGL1 through intravenous and oral routes. After three weeks, expression of human SCARB2 and PSGL1 was detected in various organs. After infection with EV71, we found that the EV71 viral load in AAV-hSCARB2- or AAV-hPSGL1-transduced mice was higher than that of the control mice in both the brain and intestines. The presence of EV71 viral particles in tissues was confirmed using immunohistochemistry analysis. Moreover, inflammatory cytokines were induced in the brain and intestines of AAV-hSCARB2- or AAV-hPSGL1-transduced mice after EV71 infection but not in wild-type mice. However, neurological disease was not observed in these animals. Taken together, we successfully infected adult mice with live EV71 and induced local inflammation using an AAV delivery system.


Assuntos
Dependovirus/genética , Enterovirus/genética , Inflamação/genética , Transfecção/métodos , Animais , Encéfalo/metabolismo , Química Encefálica , Linhagem Celular , Citocinas/análise , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Intestinos/química , Proteínas de Membrana Lisossomal/genética , Proteínas de Membrana Lisossomal/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Receptores Depuradores/genética , Receptores Depuradores/metabolismo
6.
PLoS One ; 9(9): e106756, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25197967

RESUMO

Enterovirus 71 (EV71) has caused epidemics of hand, foot and mouth diseases in Asia during the past decades and no vaccine is available. A formalin-inactivated EV71 candidate vaccine (EV71vac) based on B4 subgenotype has previously been developed and found to elicit strong neutralizing antibody responses in mice and humans. In this study, we evaluated the long-term immunogenicity and safety of this EV71vac in a non-human primate model. Juvenile macaques were immunized at 0, 3 and 6 weeks either with 10 or 5 µg doses of EV71vac formulated with AlPO4 adjuvant, or PBS as control. During the 56 weeks of studies, no fever nor local redness and swelling at sites of injections was observed in the immunized macaques. After single immunization, 100% seroconversion based on 4-fold increased in neutralization titer (Nt) was detected in EV71vac immunized monkeys but not PBS controls. A dose-dependent IgG antibody response was observed in monkeys receiving EV71vac immunization. The Nt of EV71vac immunized macaques had reached the peak after 3 vaccinations, then decreased gradually; however, the GMT of neutralizing antibody in the EV71vac immunized macaques were still above 100 at the end of the study. Correspondingly, both dose- and time-dependent interferon-γ and CD4+ T cell responses were detected in monkeys receiving EV71vac. Interestingly, similar to human responses, the dominant T cell epitopes of macaques were identified mainly in VP2 and VP3 regions. In addition, strong cross-neutralizing antibodies against most EV71 subgenotypes except some C2 and C4b strains, and Coxsackievirus A16 were observed. In summary, our results indicate that EV71vac elicits dose-dependent T-cell and antibody responses in macaques that could be a good animal model for evaluating the long-term immune responses elicited by EV71 vaccines.


Assuntos
Enterovirus Humano A/imunologia , Macaca/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Formaldeído , Linfócitos T/imunologia
7.
PLoS One ; 8(11): e79783, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24278177

RESUMO

BACKGROUND: Enterovirus 71 (EV71) has caused several epidemics of hand, foot and mouth diseases (HFMD) in Asia. No effective EV71 vaccine is available. A randomized and open-label phase I clinical study registered with ClinicalTrials.gov #NCT01268787, aims to evaluate the safety, reactogenicity and immunogenicity of a formalin-inactivated EV71 vaccine candidate (EV71vac) at 5- and 10-µg doses. In this study we report the cross-neutralizing antibody responses from each volunteer against different subgenotypes of EV71 and CVA16. METHODS: Sixty eligible healthy adults were recruited and vaccinated. Blood samples were obtained on day 0, 21 and 42 and tested against B1, B4, B5, C2, C4A, C4B and CVA16 for cross-neutralizing antibody responses. RESULTS: The immunogenicity of both 5- and 10- µg doses were found to be very similar. Approximately 45% of the participants had <8 pre-vaccination neutralization titers (Nt) against the B4 vaccine strain. After the first EV71vac immunization, 95% of vaccinees have >4-fold increase in Nt, but there was no further increase in Nt after the second dose. EV71vac induced very strong cross-neutralizing antibody responses in >85% of volunteers without pre-existing Nt against subgenotype B1, B5 and C4A. EV71vac elicited weak cross-neutralizing antibody responses (∼20% of participants) against a C4B and Coxsackie virus A16. Over 90% of vaccinated volunteers did not develop cross-neutralizing antibody responses (Nt<8) against a C2 strain. EV71vac can boost and significantly enhance the neutralizing antibody responses in volunteers who already had pre-vaccination antibodies against EV71 and/or CVA16. CONCLUSION: EV71vac is efficient in eliciting cross-neutralizing antibody responses against EV71 subgenotypes B1, B4, B5, and C4A, and provides the rationale for its evaluation in phase II clinical trials. TRIAL REGISTRATION: ClinicalTrials.gov NCT01268787.


Assuntos
Anticorpos Neutralizantes/uso terapêutico , Enterovirus Humano A/efeitos dos fármacos , Infecções por Enterovirus/tratamento farmacológico , Formaldeído/farmacologia , Vacinas de Produtos Inativados/uso terapêutico , Animais , Linhagem Celular , Chlorocebus aethiops , Enterovirus Humano A/patogenicidade , Infecções por Enterovirus/imunologia , Humanos , Células Vero
8.
Hum Vaccin Immunother ; 8(12): 1775-83, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22992566

RESUMO

Enterovirus 71 (EV71) is now recognized as an emerging neurotropic virus in Asia and with Coxsackie virus (CV) it is the other major causative agent of hand-foot-mouth diseases (HFMD). Effective medications and/or prophylactic vaccines against HFMD are urgently needed. From a scientific (the feasibility of bioprocess, immunological responses and potency in animal challenge model) and business development (cost of goods) points of view, we in this review address and discuss the pros and cons of different EV71 vaccine candidates that have been produced and evaluated in animal models. Epitope-based synthetic peptide vaccine candidates containing residues 211-225 of VP1 formulated with Freund's adjuvant (CFA/IFA) elicited low EV71 virus neutralizing antibody responses, but were protective in the suckling mouse challenge model. Among recombinant EV71 subunits (rVP1, rVP2 and rVP3) expressed in E. coli, purified and formulated with CFA/IFA, only VP1 elicited mouse antibody responses with measurable EV71-specific virus neutralization titers. Immunization of mice with either a DNA plasmid containing VP1 gene or VP1 expressed in Salmonella typhimurium also generated neutralizing antibody responses and protected animals against a live EV71 challenge. Recombinant EV71 virus-like particles (rVLP) produced from baculovirus formulated either with CFA/IFA or alum elicited good virus neutralization titers in both mice and non-human primates, and were found to be protective in the suckling mouse EV71 challenge model. Synthetic peptides or recombinant EV71 subunit vaccines (rVP1 and rVLP) formulated in alum were found to be poorly immunogenic in rabbits. Only formalin-inactivated (FI) EV71 virions formulated in alum elicited cross-neutralizing antibodies against different EV71 genotypes in mice, rabbits and non-human primates but induced weak neutralizing responses against CAV16. From a regulatory, economic and market acceptability standpoint, FI-EV71 virion vaccines are the most promising candidates and are currently being evaluated in human clinical trials. We further describe and analyze some new bioprocesses technologies that have great potential applications in EV71 vaccine development. This review also demonstrates the opportunities and challenges that the Asian vaccine industry faces today.


Assuntos
Enterovirus Humano A/imunologia , Doença de Mão, Pé e Boca/prevenção & controle , Vacinas Virais/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Antígenos Virais/genética , Antígenos Virais/imunologia , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Enterovirus Humano A/genética , Feminino , Doença de Mão, Pé e Boca/epidemiologia , Humanos , Masculino , Camundongos , Primatas , Coelhos , Análise de Sobrevida , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/genética , Vacinas de Produtos Inativados/imunologia , Vacinas de Produtos Inativados/isolamento & purificação , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/isolamento & purificação , Proteínas Estruturais Virais/genética , Proteínas Estruturais Virais/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/genética , Vacinas Virais/isolamento & purificação
9.
PLoS One ; 7(11): e49973, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23226233

RESUMO

BACKGROUND: Coxsackie virus A16 (CVA16) infections have become a serious public health problem in the Asia-Pacific region. It manifests most often in childhood exanthema, commonly known as hand-foot-and-mouth disease (HFMD). There are currently no vaccine or effective medical treatments available. PRINCIPAL FINDING: In this study, we describe the production, purification and characterization of CVA16 virus produced from Vero cells grown on 5 g/L Cytodex 1 microcarrier beads in a five-liter serum-free bioreactor system. The viral titer was found to be >10(6) the tissue culture's infectious dose (TCID(50)) per mL within 7 days post-infection when a multiplicity of infection (MOI) of 10(-5) was used for initial infection. Two CVA16 virus fractions were separated and detected when the harvested CVA16 viral concentrate was purified by a sucrose gradient zonal ultracentrifugation. The viral particles detected in the 24-28% sucrose fractions had low viral infectivity and RNA content. The viral particles obtained from 35-38% sucrose fractions were found to have high viral infectivity and RNA content, and composed of four viral proteins (VP1, VP2, VP3 and VP4), as shown by SDS-PAGE analyses. These two virus fractions were formalin-inactivated and only the infectious particle fraction was found to be capable of inducing CVA16-specific neutralizing antibody responses in both mouse and rabbit immunogenicity studies. But these antisera failed to neutralize enterovirus 71. In addition, rabbit antisera did not react with any peptides derived from CVA16 capsid proteins. Mouse antisera recognized a single linear immunodominant epitope of VP3 corresponding to residues 176-190. CONCLUSION: These results provide important information for cell-based CVA16 vaccine development. To eliminate HFMD, a bivalent EV71/CVA16 vaccine formulation is necessary.


Assuntos
Anticorpos Antivirais/biossíntese , Proteínas do Capsídeo/imunologia , Enterovirus Humano A/isolamento & purificação , Vírion/isolamento & purificação , Animais , Anticorpos Antivirais/imunologia , Reatores Biológicos , Proteínas do Capsídeo/genética , Centrifugação com Gradiente de Concentração , Chlorocebus aethiops , Eletroforese em Gel de Poliacrilamida , Enterovirus Humano A/crescimento & desenvolvimento , Enterovirus Humano A/imunologia , Enterovirus Humano A/ultraestrutura , Epitopos/imunologia , Doença de Mão, Pé e Boca/prevenção & controle , Humanos , Camundongos , Microscopia Eletrônica de Transmissão , Testes de Neutralização , Coelhos , Células Vero , Vírion/crescimento & desenvolvimento , Vírion/imunologia , Vírion/ultraestrutura
10.
PLoS One ; 7(4): e34834, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22529942

RESUMO

BACKGROUND: Enterovirus 71 (EV71) has caused several epidemics of hand, foot and mouth diseases (HFMD) in Asia and now is being recognized as an important neurotropic virus. Effective medications and prophylactic vaccine against EV71 infection are urgently needed. Based on the success of inactivated poliovirus vaccine, a prototype chemically inactivated EV71 vaccine candidate has been developed and currently in human phase 1 clinical trial. PRINCIPAL FINDING: In this report, we present the development of a serum-free cell-based EV71 vaccine. The optimization at each step of the manufacturing process was investigated, characterized and quantified. In the up-stream process development, different commercially available cell culture media either containing serum or serum-free was screened for cell growth and virus yield using the roller-bottle technology. VP-SFM serum-free medium was selected based on the Vero cell growth profile and EV71 virus production. After the up-stream processes (virus harvest, diafiltration and concentration), a combination of gel-filtration liquid chromatography and/or sucrose-gradient ultracentrifugation down-stream purification processes were investigated at a pilot scale of 40 liters each. Although the combination of chromatography and sucrose-gradient ultracentrifugation produced extremely pure EV71 infectious virus particles, the overall yield of vaccine was 7-10% as determined by a VP2-based quantitative ELISA. Using chromatography as the downstream purification, the virus yield was 30-43%. To retain the integrity of virus neutralization epitopes and the stability of the vaccine product, the best virus inactivation was found to be 0.025% formalin-treatment at 37 °C for 3 to 6 days. Furthermore, the formalin-inactivated virion vaccine candidate was found to be stable for >18 months at 4 °C and a microgram of viral proteins formulated with alum adjuvant could induce strong virus-neutralizing antibody responses in mice, rats, rabbits, and non-human primates. CONCLUSION: These results provide valuable information supporting the current cell-based serum-free EV71 vaccine candidate going into human Phase I clinical trials.


Assuntos
Enterovirus Humano A/imunologia , Infecções por Enterovirus/prevenção & controle , Vacinas Virais , Compostos de Alumínio , Animais , Técnicas de Cultura Celular por Lotes , Reatores Biológicos , Chlorocebus aethiops , Meios de Cultura Livres de Soro , Enterovirus Humano A/crescimento & desenvolvimento , Humanos , Macaca , Fosfatos , Vacinas de Produtos Inativados/imunologia , Vacinas de Produtos Inativados/isolamento & purificação , Células Vero , Vacinas Virais/imunologia , Vacinas Virais/isolamento & purificação , Inativação de Vírus
11.
PLoS One ; 6(5): e20005, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21603631

RESUMO

BACKGROUND: Enterovirus 71 (EV71) infections manifest most commonly as a childhood exanthema known as hand-foot-and-mouth disease (HFMD) and can cause neurological disease during acute infection. PRINCIPAL FINDING: In this study, we describe the production, purification and characterization of EV71 virus produced from Vero cells grown in a five-liter serum-free bioreactor system containing 5 g/L Cytodex 1 microcarrier. The viral titer was >10(6) TCID(50)/mL by 6 days post infection when a MOI of 10(-5) was used at the initial infection. Two EV71 virus fractions were separated and detected when the harvested EV71 virus concentrate was purified by sucrose gradient zonal ultracentrifugation. The EV71 viral particles detected in the 24-28% sucrose fractions had an icosahedral structure 30-31 nm in diameter and had low viral infectivity and RNA content. Three major viral proteins (VP0, VP1 and VP3) were observed by SDS-PAGE. The EV71 viral particles detected in the fractions containing 35-38% sucrose were 33-35 nm in size, had high viral infectivity and RNA content, and were composed of four viral proteins (VP1, VP2, VP3 and VP4), as shown by SDS-PAGE analyses. The two virus fractions were formalin-inactivated and induced high virus neutralizing antibody responses in mouse immunogenicity studies. Both mouse antisera recognized the immunodominant linear neutralization epitope of VP1 (residues 211-225). CONCLUSION: These results provide important information for cell-based EV71 vaccine development, particularly for the preparation of working standards for viral antigen quantification.


Assuntos
Reatores Biológicos/microbiologia , Enterovirus Humano A/isolamento & purificação , Enterovirus/isolamento & purificação , Vírion/isolamento & purificação , Animais , Centrifugação com Gradiente de Concentração , Chlorocebus aethiops , Eletroforese em Gel de Poliacrilamida , Enterovirus/crescimento & desenvolvimento , Enterovirus Humano A/crescimento & desenvolvimento , Infecções por Enterovirus/virologia , Doença de Mão, Pé e Boca/virologia , Camundongos , Vacinas , Células Vero , Vírion/crescimento & desenvolvimento
12.
Vaccine ; 29(26): 4362-72, 2011 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-21501643

RESUMO

Enterovirus 71 (EV71) infections in children manifest as exanthema and are most commonly known as hand-foot-and-mouth disease (HFMD). Because it can cause severe neurological complications like poliomyelitis, EV71 has now emerged as an important neurotropic virus in Asia. EV71 virus has been shown to consist of 3 (A, B and C) genotypes and many subgenotypes. Although EV71 vaccine development has recently yielded promising preclinical results, yet the correlation between the content of antigen(s) in vaccine candidates and the level of protective antibody responses is not established. The neutralization epitope(s) of EV71 antigens could be used as the surrogate biomarker of vaccine potency. Using peptide ELISA, antisera generated from animals immunized with formalin-inactivated EV71 virion vaccine formulated in alum, EV71-specific neutralizing monoclonal antibody (nMAb) and a panel of 153 overlapping synthetic peptides covering the entire sequences of VP1, VP2 and VP3 of EV71, we screened for immunodominant linear neutralization epitope(s). Synthetic peptide VP2-28, corresponding to residues 136-150 of VP2, was found to bind to and inhibit the binding to EV71 of nMAb MAB979 that was found to have cross-neutralizing activity against different genotypes of EV71 virus. In addition, VP2-28 was found to be recognized only by neutralizing antisera generated from rabbits immunized with the formalin-inactivated whole EV71 virion vaccine but not by antisera from immunized mice and rats. During the epitope mapping, a murine EV71 genotype- and strain-specific linear neutralization epitope VP1-43 was identified within residues 211-220 of VP1. Furthermore, based on sequence alignment and structure prediction analysis using poliovirus as the template for molecular modeling, the VP1-43 and VP2-28 epitopes were shown to run in parallel within 0.1 nm and form a rim of the canyon at the junction site of VP1 and VP2 in the viral capsid. In mouse, rat and rabbit immunogenicity studies, a dose-dependent relationship between the number of VP2-28 epitope units measured by a quantitative assay in vaccine preparations and the magnitude of neutralizing titers was demonstrated. VP2-28 has amino acid sequences that are highly conserved among EV71 genotypes, is not affected by formalin-treatment and long-term storage. Thus, VP2-28 could be used as the surrogate biomarker in the potency testing of candidate EV71 vaccines.


Assuntos
Anticorpos Antivirais/imunologia , Proteínas do Capsídeo/imunologia , Enterovirus/imunologia , Mapeamento de Epitopos , Epitopos Imunodominantes/química , Epitopos Imunodominantes/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Antivirais/sangue , Proteínas do Capsídeo/química , Linhagem Celular Tumoral , Chlorocebus aethiops , Reações Cruzadas , Enterovirus/classificação , Enterovirus/genética , Infecções por Enterovirus/prevenção & controle , Infecções por Enterovirus/virologia , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Testes de Neutralização , Peptídeos/síntese química , Peptídeos/imunologia , Poliovirus/química , Poliovirus/genética , Coelhos , Ratos , Vacinas de Produtos Inativados/imunologia , Células Vero , Vacinas Virais/imunologia
13.
J Biomed Mater Res B Appl Biomater ; 90(2): 832-41, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19280632

RESUMO

Novel emulsion-type vaccine delivery systems based on the amphiphilic bioresorbable polymer poly(ethylene glycol)-block-poly(lactide-co-epsilon-caprolactone) (PEG-b-PLACL) and selected oils were developed here. Physicochemical characterizations such as stability, a droplet test, microscopic aspects, and in vitro release showed that PEG-b-PLACL-emulsified formulations have several advantages over traditional vaccine adjuvants in that they are stable, reproducible, and homogeneous fine particles with an appropriate size to facilitate the induction of potent immune responses. Different dispersion-type emulsions have provided different release profiles using ovalbumin in model studies. Immunogenicity studies in mice have shown that antigen-specific antibody titers and T-cell proliferative responses, as well as the secretion of IFN-gamma, were significantly enhanced for ovalbumin after formulation with PEG-b-PLACL-based emulsions. These features are of great interest for applications in delivery systems of prophylactic and therapeutic vaccine candidates.


Assuntos
Sistemas de Liberação de Medicamentos , Poliésteres/química , Polietilenoglicóis/química , Vacinas/administração & dosagem , Animais , Emulsões , Feminino , Humanos , Sistema Imunitário , Imunoglobulina G/química , Camundongos , Camundongos Endogâmicos BALB C , Óleos/química , Tamanho da Partícula , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA