RESUMO
BACKGROUND/AIM: In precision therapy, liposomal encapsulated chemotherapeutic drugs have been developed to treat cancers by achieving higher drug accumulation in the tumor compared to normal tissues/organs. MATERIALS AND METHODS: We developed a novel chemoradiotherapeutic approach via nanoliposomes conjugated with vinorelbine (VNB) and 111In (111In-VNB-liposome) and examined their pharmacokinetics, biodistribution, maximum tolerance dose, and toxicity in a NOD/SCID mouse model. RESULTS: Pharmacokinetic results showed that the area under the curve (AUC) of PEGylated liposomes was about 17-fold higher than that of the free radioisotope. Tumor growth inhibition by 111In-VNB-liposome was significantly higher than that of the control (p<0.05). CONCLUSION: The tumors in NOD/SCID mice bearing HT-29/tk-luc xenografts were significantly suppressed by 111In-VNB-liposomes. The study proposed repeated treatments with a novel liposome-mediated radiochemotherapy and validation of therapeutic efficacy via imaging.