Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 247: 125606, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37406894

RESUMO

Nature-derived or biologically encouraged hydrogels have attracted considerable interest in numerous biomedical applications owing to their multidimensional utility and effectiveness. The internal architecture of a hydrogel network, the chemistry of the raw materials involved, interaction across the interface of counter ions, and the ability to mimic the extracellular matrix (ECM) govern the clinical efficacy of the designed hydrogels. This review focuses on the mechanistic viewpoint of different biologically driven/inspired biomacromolecules that encourages the architectural development of hydrogel networks. In addition, the advantage of hydrogels by mimicking the ECM and the significance of the raw material selection as an indicator of bioinertness is deeply elaborated in the review. Furthermore, the article reviews and describes the application of polysaccharides, proteins, and synthetic polymer-based multimodal hydrogels inspired by or derived from nature in different biomedical areas. The review discusses the challenges and opportunities in biomaterials along with future prospects in terms of their applications in biodevices or functional components for human health issues. This review provides information on the strategy and inspiration from nature that can be used to develop a link between multimodal hydrogels as the main frame and its utility in biomedical applications as the primary target.


Assuntos
Hidrogéis , Polímeros , Humanos , Hidrogéis/química , Polímeros/química , Proteínas/uso terapêutico , Materiais Biocompatíveis/química , Polissacarídeos/química
2.
Adv Sci (Weinh) ; 8(17): e2100864, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34254467

RESUMO

Piezoelectric materials are widely referred to as "smart" materials because they can transduce mechanical pressure acting on them to electrical signals and vice versa. They are extensively utilized in harvesting mechanical energy from vibrations, human motion, mechanical loads, etc., and converting them into electrical energy for low power devices. Piezoelectric transduction offers high scalability, simple device designs, and high-power densities compared to electro-magnetic/static and triboelectric transducers. This review aims to give a holistic overview of recent developments in piezoelectric nanostructured materials, polymers, polymer nanocomposites, and piezoelectric films for implementation in energy harvesting. The progress in fabrication techniques, morphology, piezoelectric properties, energy harvesting performance, and underpinning fundamental mechanisms for each class of materials, including polymer nanocomposites using conducting, non-conducting, and hybrid fillers are discussed. The emergent application horizon of piezoelectric energy harvesters particularly for wireless devices and self-powered sensors is highlighted, and the current challenges and future prospects are critically discussed.


Assuntos
Técnicas Biossensoriais/métodos , Fontes de Energia Elétrica , Nanotecnologia/métodos , Materiais Inteligentes , Desenho de Equipamento/métodos , Nanocompostos
3.
J Food Sci ; 82(11): 2614-2625, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29125641

RESUMO

The adhesion of spores of 3 Bacillus species with distinctive morphologies to stainless steel and borosilicate glass was studied using the fluid dynamic gauging technique. Marked differences were observed between different species of spores, and also between spores of the same species prepared under different sporulation conditions. Spores of the food-borne pathogen B. cereus were demonstrated to be capable of withstanding shear stresses greater than 1500 Pa when adhered to stainless steel, in contrast to spores of Bacillus subtilis and Bacillus megaterium, which detached in response to lower shear stress. An extended DLVO model was shown to be capable of predicting the relative differences in spore adhesion between spores of different species and different culture conditions, but did not predict absolute values of force of adhesion well. Applying the model to germinating spores showed a significant reduction in adhesion force shortly after triggering germination, indicating a potential strategy to achieve enhanced removal of spores from surfaces in response to shear stress, such as during cleaning-in-place procedures. PRACTICAL APPLICATION: Spore-forming bacteria are a concern to the food industry because they have the potential to cause food-borne illness and product spoilage, while being strongly adhesive to processing surfaces and resistant to cleaning-in-place procedures. This work is of significance to the food processors and manufacturers because it offers insight to the properties of spore adhesion and identifies a potential strategy to facilitate the removal of spores during cleaning procedures.


Assuntos
Bacillus/fisiologia , Aderência Bacteriana/fisiologia , Vidro , Esporos Bacterianos/fisiologia , Aço Inoxidável , Bacillus cereus/fisiologia , Bacillus megaterium/fisiologia , Bacillus subtilis/fisiologia , Microbiologia de Alimentos , Indústria de Processamento de Alimentos , Hidrodinâmica , Reologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA