Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 22(1): 229, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720321

RESUMO

Efficiently removing excess reactive oxygen species (ROS) generated by various factors on the ocular surface is a promising strategy for preventing the development of dry eye disease (DED). The currently available eye drops for DED treatment are palliative, short-lived and frequently administered due to the short precorneal residence time. Here, we developed nanozyme-based eye drops for DED by exploiting borate-mediated dynamic covalent complexation between n-FeZIF-8 nanozymes (n-Z(Fe)) and poly(vinyl alcohol) (PVA) to overcome these problems. The resultant formulation (PBnZ), which has dual-ROS scavenging abilities and prolonged corneal retention can effectively reduce oxidative stress, thereby providing an excellent preventive effect to alleviate DED. In vitro and in vivo experiments revealed that PBnZ could eliminate excess ROS through both its multienzyme-like activity and the ROS-scavenging activity of borate bonds. The positively charged nanozyme-based eye drops displayed a longer precorneal residence time due to physical adhesion and the dynamic borate bonds between phenyboronic acid and PVA or o-diol with mucin. The in vivo results showed that eye drops could effectively alleviate DED. These dual-function PBnZ nanozyme-based eye drops can provide insights into the development of novel treatment strategies for DED and other ROS-mediated inflammatory diseases and a rationale for the application of nanomaterials in clinical settings.


Assuntos
Síndromes do Olho Seco , Soluções Oftálmicas , Espécies Reativas de Oxigênio , Soluções Oftálmicas/química , Soluções Oftálmicas/farmacologia , Síndromes do Olho Seco/tratamento farmacológico , Animais , Espécies Reativas de Oxigênio/metabolismo , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Córnea/efeitos dos fármacos , Córnea/metabolismo , Álcool de Polivinil/química , Humanos , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacologia , Boratos/química , Nanopartículas/química , Masculino
2.
Eur J Pharm Biopharm ; 201: 114352, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38851459

RESUMO

Subconjunctival fibrosis is critical to the outcomes of several ophthalmic conditions or procedures, such as glaucoma filtering surgery. This study aimed to investigate the anti-fibrotic effect of celastrol on subconjunctival fibrosis and to further reveal the underlying mechanisms. We used celastrol-loaded nanomicelles hydrogel hybrid as a sustained-release drug. A rabbit model of subconjunctival fibrosis following silicone implantation was used for in vivo study, and TGF-ß1-induced human pterygium fibroblast (HPF) activation as an in vitro model. The effects of celastrol on inhibiting TGF-ß1-induced migration and proliferation of HPFs were evaluated by scratch wound assay and CCK-8, respectively. Immunofluorescence and western blotting were used to examine the effect of celastrol on the expression of α-SMA, collagen I, fibronectin, and the targets of the Hippo signaling pathway. We found that in vivo celastrol treatment reduced the expression of YAP and TAZ in subconjunctival tissue. Moreover, celastrol alleviated collagen deposition and subconjunctival fibrosis at 8 weeks. No obvious tissue toxicity was observed in the rabbit models. Mechanistically, celastrol significantly inhibited TGF-ß1-induced proliferation and migration of HPFs. Pretreatment of HPFs with celastrol also suppressed the TGF-ß1-induced protein expression of α-SMA, collagen I, fibronectin, TGF-ßRII, phosphorylated Smad2/3, YAP, TAZ, and TEAD1. In conclusion, celastrol effectively prevented subconjunctival fibrosis through inhibiting TGF-ß1/Smad2/3-YAP/TAZ pathway. Celastrol could serve as a promising therapy for subconjunctival fibrosis.


Assuntos
Fibrose , Glaucoma , Triterpenos Pentacíclicos , Animais , Coelhos , Fibrose/tratamento farmacológico , Triterpenos Pentacíclicos/farmacologia , Glaucoma/cirurgia , Glaucoma/tratamento farmacológico , Humanos , Silicones , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Proliferação de Células/efeitos dos fármacos , Masculino , Hidrogéis , Triterpenos/farmacologia , Triterpenos/administração & dosagem , Movimento Celular/efeitos dos fármacos , Modelos Animais de Doenças , Fator de Crescimento Transformador beta1/metabolismo , Túnica Conjuntiva/efeitos dos fármacos , Túnica Conjuntiva/patologia , Túnica Conjuntiva/metabolismo , Próteses e Implantes/efeitos adversos , Transdução de Sinais/efeitos dos fármacos , Preparações de Ação Retardada , Doenças da Túnica Conjuntiva/prevenção & controle
3.
Ann Med ; 56(1): 2313680, 2024 12.
Artigo em Inglês | MEDLINE | ID: mdl-38335557

RESUMO

PURPOSE: To evaluate the role of M2 macrophages in subconjunctival fibrosis after silicone implantation (SI) and investigate the underlying mechanisms. MATERIALS AND METHODS: A model of subconjunctival fibrosis was established by SI surgery in rabbit eyes. M2 distribution and collagen deposition were evaluated by histopathology. The effects of M2 cells on the migration (using wound-scratch assay) and activation (by immunofluorescence and western blotting) of human Tenon's fibroblasts (HTFs) were investigated. RESULTS: There were more M2 macrophages (CD68+/CD206+ cells) occurring in tissue samples around silicone implant at 2 weeks postoperatively. Dense collagen deposition was observed at 8 weeks after SI. In vitro experiment showed M2 expressed high level of CD206 and transforming growth factor-ß1 (TGF-ß1). The M2-conditioned medium promoted HTFs migration and the synthesis of collagen I and fibronectin. Meanwhile, M2-conditioned medium increased the protein levels of TGF-ß1, TGF-ßR II, p-Smad2/3, yes-associated protein (YAP), and transcriptional coactivator with PDZ-binding motif (TAZ). Verteporfin, a YAP inhibitor, suppressedTGF-ß1/Smad2/3-YAP/TAZ pathway and attenuated M2-induced extracellular matrix deposition by HTFs. CONCLUSIONS: TGF-ß1/Smad2/3-YAP/TAZ signalling may be involved in M2-induced fibrotic activities in HTFs. M2 plays a key role in promoting subconjunctival fibrosis and can serve as an attractive target for anti-fibrotic therapeutics.


Assuntos
Macrófagos , Fator de Crescimento Transformador beta1 , Animais , Humanos , Coelhos , Colágeno , Meios de Cultivo Condicionados , Fibrose , Macrófagos/metabolismo , Silicones , Fator de Crescimento Transformador beta1/metabolismo , Proteínas de Sinalização YAP/metabolismo , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/metabolismo
4.
Carbohydr Polym ; 275: 118762, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34742450

RESUMO

Fungal keratitis remains a serious infectious ocular disease, and the traditional administration of eye drops is limited by ocular intrinsic barriers and drug shortages. Herein, we fabricated a chitosan-based dual-functional platform for ocular topical delivery of econazole. The platform can prolong the residence time on the ocular surface due to its strong interaction with the mucin layer by physical adhesion and covalent bonding, and also open corneal epithelial tight junctions for being positively charged, thereby enhancing corneal penetration of drug. Using these strategies, dosing concentration was reduced from 0.3 wt% to 0.1 wt%, dosing frequency was reduced from once-an-hour to twice-daily, in vitro and in vivo antifungal therapeutic effects were achieved and patient compliance could be improved. Given its high structural adaptability, many other ocular anterior segment-related diseases would benefit from this platform.


Assuntos
Antifúngicos/farmacologia , Materiais Biocompatíveis/farmacologia , Quitosana/farmacologia , Infecções Oculares Fúngicas/tratamento farmacológico , Ceratite/tratamento farmacológico , Soluções Oftálmicas/farmacologia , Administração Oftálmica , Animais , Antifúngicos/administração & dosagem , Antifúngicos/química , Materiais Biocompatíveis/administração & dosagem , Materiais Biocompatíveis/química , Configuração de Carboidratos , Quitosana/administração & dosagem , Quitosana/química , Sistemas de Liberação de Medicamentos , Infecções Oculares Fúngicas/microbiologia , Feminino , Fusarium/efeitos dos fármacos , Humanos , Ceratite/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Soluções Oftálmicas/administração & dosagem , Soluções Oftálmicas/química
5.
J Biomed Nanotechnol ; 15(3): 500-506, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31165695

RESUMO

In recent years, various magnetic bio-materials with physical and morphological cues have been used in biomedical area due to their advantageous characteristics. As one class of them, magnetic fibrous scaffolds have attracted many researchers' interests because they have an important positive impact on cellular growth behavior. They provide various physical cues to regulate the regeneration and repair of damaged tissue, and promote new tissue formation. In this study, we developed core-shell structured magnetic fibers (3D CS-MFs) using cooperative assembly method the combination with electrospinning technology. The obtained magnetic 3D CS-MFs displayed excellent magnetic performance, biocompatibility, and provided a desirable microenvironment for model cells (bone marrow mesenchymal stem cells, BMSCs) growth. More importantly, BMSCs exhibited excellent viability and 3D growth. The novel preparation method will greatly enhance the potential application of magnetic fibrous scaffold in the biomedical area, such as drug release, and tissue engineering.


Assuntos
Células-Tronco Mesenquimais , Alicerces Teciduais , Materiais Biocompatíveis , Engenharia Tecidual
6.
J Biomed Nanotechnol ; 15(11): 2209-2215, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31847935

RESUMO

Fibrous scaffold could provide extracellular matrix (ECM) like structure and desired network for cell growth; however, the mechanical performance of this type uni-structured fibrous scaffold cannot meet the requirement of tissue formation. Therefore, new strategies are needed for form mechanical strength enhancement. In this study, we developed three dimensional double-network structured fibrous scaffold (3D DN-Fs) using self-assembly technology combined with electrospinning technology. Our 3D DN-Fs consists of two types of skeletons: the finer silk nanofibers which can mimic biocompatible ECM structure; and the larger skeletal fibrous layers can greatly improve the mechanical strength and cellular loading ability, and provide good nutrition and excreta delivery system for cell growth. Therefore, our 3D DN-Fs displayed excellent mechanical performance (more than 50% increment), biocompatibility, biodegradability, and a desirable microenvironment for cell growth. More importantly, cultured cells exhibited excellent viability and 3D growth. Our novel strategy greatly enhances the potential application of fibrous scaffold in the biomedical area, such as 3D cell culture and tissue engineering.


Assuntos
Proliferação de Células , Alicerces Teciduais , Materiais Biocompatíveis , Matriz Extracelular , Nanofibras , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA