Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Soft Matter ; 20(9): 2017-2023, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38334445

RESUMO

Surgical adhesives play a crucial role in tissue integration and repair, yet their application in wet conditions has been severely limited by inadequate adhesive strength and subpar biocompatibility. Furthermore, tissue adhesives have rarely been reported in cartilage tissue repair. In this study, a three-armed dopamine-modified hyaluronic acid derivative adhesive was prepared to function as a bio-inspired adhesive in moist environments. To meet the clinical requirements for cartilage tissue adhesion, we studied its chemical structure, including microscopic morphology, adhesion properties with materials and tissues, in vivo degradation rules, and biological evaluation. The OGMHA8-DOPA adhesive with the optimal aldehyde substitution degree and dopamine-grafting rate was determined by analyzing the experimental conditions. SEM results revealed that the cartilage tissue adhered to a porous interconnected structure. The excellent biocompatibility of the material not only facilitated chondrocyte adhesion but also supported their proliferation on its surface. Animal experiments have demonstrated that this material has no observable inflammatory response or incidence of fibrous capsule formation. The degradation timeline of the material extends beyond the duration of two weeks. The dopamine-modified adhesive exhibited a tight interfacial binding force between the biomaterial and cartilage tissue and excellent biocompatibility in watery tissue, revealing its potential for application in cartilage tissue repair and minimally invasive surgery.


Assuntos
Adesivos , Materiais Biocompatíveis , Animais , Materiais Biocompatíveis/farmacologia , Adesivos/química , Dopamina/química , Cartilagem , Condrócitos
2.
Zhongguo Dang Dai Er Ke Za Zhi ; 21(5): 415-420, 2019 May.
Artigo em Zh | MEDLINE | ID: mdl-31104654

RESUMO

OBJECTIVE: To study the clinical features of Langerhans cell histiocytosis (LCH) involving the oral and maxillofacial region in children. METHODS: A retrospective analysis was performed for the clinical data of 12 children with LCH involving the oral and maxillofacial region who were hospitalized and treated from September 2012 to September 2017, including clinical manifestations, pathological features, treatment and prognosis. RESULTS: Of the 12 children, 8 (67%) had multiple system involvement and 7 (58%) had the involvement of organs at risk. Bone was the most common affected site (11 children, 92%), among whom 7 children had the involvement of the mandible. Oral soft tissue involvement manifested as gingival ulcer or hyperplasia in 4 children, loose teeth in 5 children, oral mucosal lesions in 2 children, and nodular lesions in 1 child. Pathological examination showed positive CDla in 11 children and positive CD207, CD68, S-100, and LCA in 12 children. Surgery combined with chemotherapy was the major treatment method, and surgical resection alone was performed for focal lesions. After treatment, 11 children were cured or improved and 1 gave up treatment and was lost to follow-up. No recurrence was observed. CONCLUSIONS: LCH children with oral and maxillofacial involvement often have the involvement of multiple systems and organs at risk, with the mandible as the most common affected site. These children may also have the involvement of gingiva, oral mucosa and teeth. Surgery combined with chemotherapy is the major treatment method, and the patients generally have a good prognosis without recurrence.


Assuntos
Histiocitose de Células de Langerhans , Criança , Humanos , Mucosa Bucal , Prognóstico , Recidiva , Estudos Retrospectivos
3.
Int J Biol Macromol ; 262(Pt 1): 129911, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38320640

RESUMO

The challenge of global climate change has drawn people's attention to the issue of carbon emissions. Reducing the use of petroleum-derived materials and increasing the use of biodegradable materials is a current focus of research, especially in the packaging materials industry. This study focused on the use of environmentally friendly plastics and waste paper as the main materials for packaging films. Poly(butylene succinate-co-lactate) (PBSL) was modified with maleic anhydride (MA) to form a biobased compatibilizer (MPBSL), which was then blended with a mixture (WPS) of waste-paper powder (WP) and silica aerogel powder (SP) to form the designed composite (MPBSL/WPS). The modification of PBSL with MA improved interfacial adhesion between PBSL and WPS. The structure, thermal, and mechanical properties, water vapor/oxygen barrier, toxicity, freshness, and biodegradability of MPBSL/WPS films were evaluated. Compared with the PBSL/WP film, the MPBSL/WPS film exhibited increased tensile strength at break of 4-13.5 MPa, increased initial decomposition loss at 5 wt% of 14-35 °C, and decreased water/oxygen permeabilities of 18-105 cm3/m2·d·Pa. In the water absorption test, the MPBSL/WPS film displayed about 2-6 % lower water absorption than that of the PBSL/WP film. In the cytocompatibility test, both MPBSL/WPS and PBSL/WP membrane were nontoxic. In addition, compared with PBSL/WP film and the control, the MPBSL/WPS film significantly reduced moisture loss, extended the shelf life, and prevented microbial growth in vegetable and meat preservation tests. Both MPBSL/WPS and PBSL/WP films were biodegradable in a 60-day soil biodegradation test; the degradation rate was 50 % when the WP or WPS content was 40 wt%. Our findings indicate that the composites would be suitable for environmentally sustainable packaging materials.


Assuntos
Alcenos , Butileno Glicóis , Ácido Láctico , Anidridos Maleicos , Polímeros , Humanos , Pós , Oxigênio , Succinatos
4.
Biosens Bioelectron ; 208: 114203, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35395618

RESUMO

A conducting molecularly imprinted polymer (MIP) film was integrated with an extended-gate field-effect transistor (EG-FET) transducer to determine epitopes of matrix metalloproteinase-1 (MMP-1) protein biomarker of idiopathic pulmonary fibrosis (IPF) selectively. Most suitable epitopes for imprinting were selected with Basic Local Alignment Search Tool software. From a pool of MMP-1 epitopes, the two, i.e., MIAHDFPGIGHK and HGYPKDIYSS, the relatively short ones, most promising for MMP-1 determination, were selected, mainly considering their advantageous outermost location in the protein molecule and stability against aggregation. MIPs templated with selected epitopes of the MMP-1 protein were successfully prepared by potentiodynamic electropolymerization and simultaneously deposited as thin films on electrodes. The chemosensors, constructed of MIP films integrated with EG-FET, proved useful in determining these epitopes even in a medium as complex as a control serum. The limit of detection for the MIAHDFPGIGHK and HGYPKDIYSS epitope was ∼60 and 20 nM, respectively. Moreover, the chemosensors selectively recognized whole MMP-1 protein in the 50-500 nM concentration range in buffered control serum samples.


Assuntos
Técnicas Biossensoriais , Impressão Molecular , Epitopos , Metaloproteinase 1 da Matriz , Polímeros Molecularmente Impressos
5.
Biosensors (Basel) ; 12(11)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36421137

RESUMO

Instead of molecularly imprinting a whole protein molecule, imprinting protein epitopes is gaining popularity due to cost and solubility issues. Belonging to the matrix metalloproteinase protein family, MMP-1 is an interstitial collagenase that degrades collagen and may be involved in cell migration, cell proliferation, the pro-inflammatory effect, and cancer progression. Hence, it can serve as a disease protein biomarker and thus be useful in early diagnosis. Herein, epitopes of MMP-1 were identified by screening its crystal structure. To identify possible epitopes for imprinting, MMP-1 was cleaved in silico with trypsin, pepsin at pH = 1.3, and pepsin at pH > 2.0 using Peptide Cutter, generating peptide fragments containing 8 to 12 amino acids. Five criteria were applied to select the peptides most suitable as potential epitopes for MMP-1. The triphenylamine rhodanine-3-acetic acid (TPARA) functional monomer was synthesized to form a stable pre-polymerization complex with a selected template epitope. The complexed functional monomer was then copolymerized with 3,4-ethoxylenedioxythiophene (EDOT) using potentiodynamic electropolymerization onto indium−tin−oxide (ITO) electrodes. The composition of the molecularly imprinted poly(TPARA-co-EDOT) (MIP) was optimized by maximizing the film's electrical conductivity. Cyclic voltammetry was used to determine MMP-1 concentration in the presence of the Fe(CN)63−/Fe(CN)64− redox probe actuating the "gate effect." A calibration curve was constructed and used to determine the usable concentration range and the limit of detection as ca. 0.001 to 10.0 pg/mL and 0.2 fg/mL MMP-1, respectively. Finally, the MMP-1 concentration in the A549 human lung (carcinoma) culture medium was measured, and this determination accuracy was confirmed using an ELISA assay.


Assuntos
Impressão Molecular , Humanos , Metaloproteinase 1 da Matriz , Epitopos , Polímeros/química , Pepsina A , Peptídeos , Poli A
6.
Biomed Mater ; 16(4)2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34038891

RESUMO

Chitosan (CS) hydrogels have been widely used throughout basic tissue engineering and regenerative medicine research and it is very desirable to develop advanced CS materials with superior mechanical and topographical properties for more extensive applications. Herein, we present the design of a double crosslinking pure CS hydrogel material via the synergic effect of the chemical covalent network, hydrophobic interactions, enhanced intermolecular hydrogen bonding and the formation of the CS crystallite. The resultant pure CS hydrogel possesses increases in strength and toughness by two orders of magnitude (fracture energy ∼7.733 J m-2; maximal compression stress ∼10.81 MPa, elastic modulus ∼1.33 MPa). We utilize1H NMR and FT-IR to prove the success of chemical modification. The results of Raman spectra and WXRD have proved the existence of physical interaction between CS hydrogels and microcrystals, thus explaining the enhancement mechanism of mechanical strength of CS hydrogel. The live and death results also show that MSCs can grow well on CS hydrogels, and the results of CCK-8 indicate low cytotoxicity of CS hydrogels. This CS hydrogel shows great potential applications in tissue engineering and regenerative medicine.


Assuntos
Materiais Biocompatíveis/química , Quitosana/química , Hidrogéis/química , Reagentes de Ligações Cruzadas , Interações Hidrofóbicas e Hidrofílicas , Teste de Materiais , Engenharia Tecidual
7.
Biosens Bioelectron ; 150: 111901, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31767344

RESUMO

Molecularly imprinted polymers (MIPs) have been developed to replace antibodies for the recognition of target molecules (such as antigens), and have been integrated into electrochemical sensing approaches by polymerization onto an electrode. Electrochemical sensing is inexpensive and flexible, and has demonstrated utility in point-of-care devices. In this work, several 2D (conductive) materials were employed to improve the performance of MIP sensors. Screen-printed electrodes were coated by the electropolymerization of aniline and metanilic acid, commingled with target molecules and various 2D materials. Tungsten disulfide (WS2) with an average particle size of 2 µm was found to increase the sensitivity of detection of molecularly imprinted conductive polymer-coated electrodes to 17ß-estradiol. As estradiol concentrations are important to eel aquaculture, we screened eel serum samples to determine their 17ß-estradiol concentrations, which were found to be in the range 28.2 ± 3.6 to 73.0 ± 11.6 pg/mL after dilution. These results were in agreement with measurements using commercial immunoanalysis.


Assuntos
Enguias/sangue , Estradiol/sangue , Polímeros/química , Animais , Técnicas Biossensoriais/métodos , Condutividade Elétrica , Eletrodos , Feminino , Limite de Detecção , Metais/química , Impressão Molecular/métodos , Polimerização
8.
Adv Healthc Mater ; 7(14): e1800315, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29920990

RESUMO

Many factors contribute to the poor axonal regrowth and ineffective functional recovery after spinal cord injury (SCI). Biomaterials have been used for SCI repair by promoting bridge formation and reconnecting the neural tissue at the lesion site. The mechanical properties of biomaterials are critical for successful design to ensure the stable support as soon as possible when compressed by the surrounding spine and musculature. Poly(propylene fumarate) (PPF) scaffolds with high mechanical strength have been shown to provide firm spatial maintenance and to promote repair of tissue defects. A multichannel PPF scaffold is combined with collagen biomaterial to build a novel biocompatible delivery system coated with neurotrophin-3 containing an engineered collagen-binding domain (CBD-NT3). The parallel-aligned multichannel structure of PPF scaffolds guide the direction of neural tissue regeneration across the lesion site and promote reestablishment of bridge connectivity. The combinatorial treatment consisting of PPF and collagen loaded with CBD-NT3 improves the inhibitory microenvironment, facilitates axonal and neuronal regeneration, survival of various types of functional neurons and remyelination and synapse formation of regenerated axons following SCI. This novel treatment strategy for SCI repair effectively promotes neural tissue regeneration after transected spinal injury by providing a regrowth-supportive microenvironment and eventually induces functional improvement.


Assuntos
Fumaratos/química , Fatores de Crescimento Neural/química , Regeneração Nervosa/fisiologia , Polipropilenos/química , Traumatismos da Medula Espinal/terapia , Alicerces Teciduais/química , Animais , Ratos , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA