RESUMO
This roadmap outlines the role semiconductor-based materials play in understanding the complex biophysical dynamics at multiple length scales, as well as the design and implementation of next-generation electronic, optoelectronic, and mechanical devices for biointerfaces. The roadmap emphasizes the advantages of semiconductor building blocks in interfacing, monitoring, and manipulating the activity of biological components, and discusses the possibility of using active semiconductor-cell interfaces for discovering new signaling processes in the biological world.
Assuntos
Comunicação Celular/fisiologia , Polímeros/química , Semicondutores , Propriedades de SuperfícieRESUMO
Normal or excessive oxidative metabolism in organisms is essential in physiological and pathophysiological processes, respectively. Therefore, monitoring of biological oxidative processes induced by the chemical or physical stimuli is nowadays of extreme importance due to the environment overloaded with various physicochemical factors. Current techniques typically require the addition of chemical labels or light illumination, which perturb the samples to be analyzed. Moreover, the current techniques are very demanding in terms of sample preparation and equipment. To alleviate these limitations, we propose a label-free monitoring tool of oxidation based on biological autoluminescence (BAL). We demonstrate this tool on Saccharomyces cerevisiae cell culture. We showed that BAL can be used to monitor chemical perturbation of yeast due to Fenton reagents initiated oxidation-the BAL intensity changes with hydrogen peroxide concentration in a dose-dependent manner. Furthermore, we also showed that BAL reflects the effects of low-frequency magnetic field on the yeast cell culture, where we observed a disturbance of the BAL kinetics in the exposed vs. control case. Our results contribute to the development of novel techniques for label-free, real-time, noninvasive monitoring of oxidative processes and approaches for their modulation.
Assuntos
Luminescência , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Celulose/análogos & derivados , Celulose/farmacologia , Técnicas de Cultura , Combinação de Medicamentos , Oxirredução/efeitos dos fármacos , Povidona/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacosRESUMO
One of the most important barriers to the detection of the biological autoluminescence (BAL) from biosystems using a non-invasive monitoring approach, in both the in vivo and the in vitro applications, is its very low signal intensity (< 1000 photons/s/cm2). Experimental studies have revealed that the formation of electron excited species, as a result of reactions of biomolecules with reactive oxygen species (ROS), is the principal biochemical source of the BAL which occurs during the cell metabolism. Mitochondria, as the most important organelles involved in oxidative metabolism, are considered to be the main intracellular BAL source. Hence, in order to achieve the BAL enhancement via affecting the mitochondria, we prepared a novel mitochondrial-liposomal nanocarrier with two attractive features including the intra-liposomal gold nanoparticle synthesizing ability and the mitochondria penetration capability. The results indicate that these nanocarriers (with the average size of 131.1⯱â¯20.1â¯nm) are not only able to synthesize the gold nanoparticles within them (with the average size of 15â¯nm) and penetrate into the U2OS cell mitochondria, but they are also able to amplify the BAL signals. Our results open new possibilities for the use of biological autoluminescence as a non-invasive and label-free monitoring method in nanomedicine and biotechnology.