Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biophys J ; 112(9): 1863-1873, 2017 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-28494957

RESUMO

Serotonin (5-hydroxytryptamine, 5-HT) is a well-known neurotransmitter that is involved in a growing number of functions in peripheral tissues. Recent studies have shown nonpharmacological functions of 5-HT linked to its chemical properties. Indeed, it was reported that 5-HT may, on the one hand, bind lipid membranes and, on the other hand, protect red blood cells through a mechanism independent of its specific receptors. To better understand these underevaluated properties of 5-HT, we combined biochemical, biophysical, and molecular dynamics simulations approaches to characterize, at the molecular level, the antioxidant capacity of 5-HT and its interaction with lipid membranes. To do so, 5-HT was added to red blood cells and lipid membranes bearing different degrees of unsaturation. Our results demonstrate that 5-HT acts as a potent antioxidant and binds with a superior affinity to lipids with unsaturation on both alkyl chains. We show that 5-HT locates at the hydrophobic-hydrophilic interface, below the glycerol group. This interfacial location is stabilized by hydrogen bonds between the 5-HT hydroxyl group and lipid headgroups and allows 5-HT to intercept reactive oxygen species, preventing membrane oxidation. Experimental and molecular dynamics simulations using membrane enriched with oxidized lipids converge to further reveal that 5-HT contributes to the termination of lipid peroxidation by direct interaction with active groups of these lipids and could also contribute to limit the production of new radicals. Taken together, our results identify 5-HT as a potent inhibitor of lipid peroxidation and offer a different perspective on the role of this pleiotropic molecule.


Assuntos
Antioxidantes/metabolismo , Membrana Celular/metabolismo , Lipídeos de Membrana/metabolismo , Serotonina/metabolismo , Antioxidantes/administração & dosagem , Antioxidantes/química , Membrana Celular/química , Eritrócitos/química , Eritrócitos/metabolismo , Citometria de Fluxo , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Peroxidação de Lipídeos , Lipossomos/química , Lipossomos/metabolismo , Microscopia Confocal , Simulação de Dinâmica Molecular , Oxirredução , Serotonina/administração & dosagem , Serotonina/química
2.
PLoS One ; 5(1): e8921, 2010 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-20126667

RESUMO

BACKGROUND: Rh glycoproteins (RhAG, RhBG, RhCG) are members of the Amt/Mep/Rh family which facilitate movement of ammonium across plasma membranes. Changes in ammonium transport activity following expression of Rh glycoproteins have been described in different heterologous systems such as yeasts, oocytes and eukaryotic cell lines. However, in these complex systems, a potential contribution of endogenous proteins to this function cannot be excluded. To demonstrate that Rh glycoproteins by themselves transport NH(3), human RhCG was purified to homogeneity and reconstituted into liposomes, giving new insights into its channel functional properties. METHODOLOGY/PRINCIPAL FINDINGS: An HA-tag introduced in the second extracellular loop of RhCG was used to purify to homogeneity the HA-tagged RhCG glycoprotein from detergent-solubilized recombinant HEK293E cells. Electron microscopy analysis of negatively stained purified RhCG-HA revealed, after image processing, homogeneous particles of 9 nm diameter with a trimeric protein structure. Reconstitution was performed with sphingomyelin, phosphatidylcholine and phosphatidic acid lipids in the presence of the C(12)E(8) detergent which was subsequently removed by Biobeads. Control of protein incorporation was carried out by freeze-fracture electron microscopy. Particle density in liposomes was a function of the Lipid/Protein ratio. When compared to empty liposomes, ammonium permeability was increased two and three fold in RhCG-proteoliposomes, depending on the Lipid/Protein ratio (1/300 and 1/150, respectively). This strong NH(3) transport was reversibly inhibited by mercuric and copper salts and exhibited a low Arrhenius activation energy. CONCLUSIONS/SIGNIFICANCE: This study allowed the determination of ammonia permeability per RhCG monomer, showing that the apparent Punit(NH3) (around 1x10(-3) microm(3)xs(-1)) is close to the permeability measured in HEK293E cells expressing a recombinant human RhCG (1.60x10(-3) microm(3)xs(-1)), and in human red blood cells endogenously expressing RhAG (2.18x10(-3) microm(3)xs(-1)). The major finding of this study is that RhCG protein is active as an NH(3) channel and that this function does not require any protein partner.


Assuntos
Amônia/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Lipossomos , Glicoproteínas de Membrana/metabolismo , Sequência de Aminoácidos , Biopolímeros , Linhagem Celular , Eletroforese em Gel de Poliacrilamida , Técnica de Fratura por Congelamento , Humanos , Metilaminas/metabolismo , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Osmose , Proteínas Recombinantes/metabolismo
3.
J Biol Chem ; 278(28): 25526-33, 2003 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-12719424

RESUMO

Several studies suggest that the Rh complex represents a major interaction site between the membrane lipid bilayer and the red cell skeleton, but little is known about the molecular basis of this interaction. We report here that ankyrin-R is capable of interacting directly with the C-terminal cytoplasmic domain of Rh and RhAG polypeptides. We first show that the primary defect of ankyrin-R in normoblastosis (nb/nb) spherocytosis mutant mice is associated with a sharp reduction of RhAG and Rh polypeptides. Secondly, our flow cytometric analysis of the Triton X-100 extractability of recombinant fusion proteins expressed in erythroleukemic cell lines suggests that the C-terminal cytoplasmic domains of Rh and RhAG are sufficient to mediate interaction with the erythroid membrane skeleton. Using the yeast two-hybrid system, we demonstrate a direct interaction between the cytoplasmic tails of Rh and RhAG and the second repeat domain (D2) of ankyrin-R. This finding is supported by the demonstration that the substitution of Asp-399 in the cytoplasmic tail of RhAG, a mutation associated with the deficiency of the Rh complex in one Rhnull patient, totally impaired interaction with domain D2 of ankyrin-R. These results identify the Rh/RhAG-ankyrin complex as a new interaction site between the red cell membrane and the spectrin-based skeleton, the disruption of which might result in the stomato-spherocytosis typical of Rhnull red cells.


Assuntos
Anquirinas/química , Anquirinas/metabolismo , Proteínas Sanguíneas , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Animais , Western Blotting , Proteínas de Ligação a Calmodulina/metabolismo , Citoplasma/metabolismo , Detergentes/farmacologia , Eletroforese em Gel de Poliacrilamida , Eritrócitos/metabolismo , Citometria de Fluxo , Glutationa Transferase/metabolismo , Humanos , Células K562 , Bicamadas Lipídicas/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Mutantes , Modelos Biológicos , Octoxinol/farmacologia , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/metabolismo , Sistema do Grupo Sanguíneo Rh-Hr/química , Transfecção , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA