Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Pathog ; 14(8): e1007190, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30075025

RESUMO

Enterovirus 71 (EV71) causes hand, foot and mouth disease, a mild and self-limited illness that is sometimes associated with severe neurological complications. EV71 neurotropic determinants remain ill-defined to date. We previously identified a mutation in the VP1 capsid protein (L97R) that was acquired over the course of a disseminated infection in an immunocompromised host. The mutation was absent in the respiratory tract but was present in the gut (as a mixed population) and in blood and cerebrospinal fluid (as a dominant species). In this study, we demonstrated that this mutation does not alter the dependence of EV71 on the human scavenger receptor class B2 (SCARB2), while it enables the virus to bind to the heparan sulfate (HS) attachment receptor and modifies viral tropism in cell lines and in respiratory, intestinal and neural tissues. Variants with VP197L or VP197R were able to replicate to high levels in intestinal and neural tissues and, to a lesser extent, in respiratory tissues, but their preferred entry site (from the luminal or basal tissue side) differed in respiratory and intestinal tissues and correlated with HS expression levels. These data account for the viral populations sequenced from the patient's respiratory and intestinal samples and suggest that improved dissemination, resulting from an acquired ability to bind HS, rather than specific neurotropism determinants, enabled the virus to reach and infect the central nervous system. Finally, we showed that iota-carrageenan, a highly sulfated polysaccharide, efficiently blocks the replication of HS-dependent variants in cells and 2D neural cultures. Overall, the results of this study emphasize the importance of HS binding in EV71 pathogenesis and open new avenues for the development of antiviral molecules that may prevent this virus's dissemination.


Assuntos
Proteínas do Capsídeo/genética , Enterovirus Humano A/fisiologia , Doença de Mão, Pé e Boca/virologia , Heparitina Sulfato/metabolismo , Tropismo Viral/genética , Animais , Enterovirus Humano A/patogenicidade , Doença de Mão, Pé e Boca/genética , Doença de Mão, Pé e Boca/metabolismo , Humanos , Proteínas de Membrana Lisossomal/metabolismo , Camundongos , Mutação , Receptores Depuradores/metabolismo , Replicação Viral/genética
2.
Eur J Pharm Biopharm ; 118: 68-72, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28040470

RESUMO

We report here the establishment and characterization of an in vitro human small airway model (SmallAir™). The epithelial cells were isolated from the distal lungs by enzymatic digestion. After amplification, the cells were seeded on the microporous membrane of Transwell inserts. Once confluent, the cultures were switched to air-liquid interface. After 3weeks of culture, the epithelium became fully differentiated, with morphology of columnar epithelium, and a thickness of 10-15µm. Most significantly, CC-10, a specific marker of Club cells, was highly expressed in SmallAir™. CC-10 was detected by both immune-cytochemistry and Western Blot. As expected, SmallAir™ contained few Muc5-Ac positive cells (goblet cells). In contrast, CC-10 was not detected in MucilAir™, an in vitro model of the human nasal and bronchial epithelial model. Instead, Muc5-Ac was highly expressed in MucilAir™. However, both MucilAir™ and SmallAir™ contain basal cells and ciliated cells, showing cilia beating and mucociliary clearance. Clearly, MucilAir™ and SmallAir™ are two distinct airway epithelial models.


Assuntos
Brônquios/metabolismo , Técnicas de Cultura de Células/métodos , Células Epiteliais/metabolismo , Mucosa Respiratória/metabolismo , Uteroglobina/metabolismo , Western Blotting , Brônquios/citologia , Diferenciação Celular , Células Cultivadas , Cílios/metabolismo , Humanos , Imuno-Histoquímica , Membranas Artificiais , Mucina-5AC/metabolismo , Mucosa Respiratória/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA