Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
PLoS Comput Biol ; 15(5): e1007058, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31141513

RESUMO

The most mineralized tissue of the mammalian body is tooth enamel. Especially in species with thick enamel, three-dimensional (3D) tomography data has shown that the distribution of enamel varies across the occlusal surface of the tooth crown. Differences in enamel thickness among species and within the tooth crown have been used to examine taxonomic affiliations, life history, and functional properties of teeth. Before becoming fully mineralized, enamel matrix is secreted on the top of a dentine template, and it remains to be explored how matrix thickness is spatially regulated. To provide a predictive framework to examine enamel distribution, we introduce a computational model of enamel matrix secretion that maps the dentine topography to the enamel surface topography. Starting from empirical enamel-dentine junctions, enamel matrix deposition is modeled as a diffusion-limited free boundary problem. Using laboratory microCT and synchrotron tomographic data of pig molars that have markedly different dentine and enamel surface topographies, we show how diffusion-limited matrix deposition accounts for both the process of matrix secretion and the final enamel distribution. Simulations reveal how concave and convex dentine features have distinct effects on enamel surface, thereby explaining why the enamel surface is not a straightforward extrapolation of the dentine template. Human and orangutan molar simulations show that even subtle variation in dentine topography can be mapped to the enamel surface features. Mechanistic models of extracellular matrix deposition can be used to predict occlusal morphologies of teeth.


Assuntos
Esmalte Dentário/metabolismo , Modelos Dentários , Algoritmos , Animais , Biologia Computacional , Simulação por Computador , Esmalte Dentário/anatomia & histologia , Análise de Elementos Finitos , Humanos , Imageamento Tridimensional , Mamíferos , Dente Molar/anatomia & histologia , Dente Molar/metabolismo , Suínos , Dente/anatomia & histologia , Dente/metabolismo , Microtomografia por Raio-X
2.
Nature ; 512(7512): 44-8, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-25079326

RESUMO

The evolutionary relationships of extinct species are ascertained primarily through the analysis of morphological characters. Character inter-dependencies can have a substantial effect on evolutionary interpretations, but the developmental underpinnings of character inter-dependence remain obscure because experiments frequently do not provide detailed resolution of morphological characters. Here we show experimentally and computationally how gradual modification of development differentially affects characters in the mouse dentition. We found that intermediate phenotypes could be produced by gradually adding ectodysplasin A (EDA) protein in culture to tooth explants carrying a null mutation in the tooth-patterning gene Eda. By identifying development-based character inter-dependencies, we show how to predict morphological patterns of teeth among mammalian species. Finally, in vivo inhibition of sonic hedgehog signalling in Eda null teeth enabled us to reproduce characters deep in the rodent ancestry. Taken together, evolutionarily informative transitions can be experimentally reproduced, thereby providing development-based expectations for character-state transitions used in evolutionary studies.


Assuntos
Evolução Biológica , Fósseis , Dente/anatomia & histologia , Dente/crescimento & desenvolvimento , Animais , Simulação por Computador , Ectodisplasinas/deficiência , Ectodisplasinas/genética , Ectodisplasinas/farmacologia , Feminino , Deleção de Genes , Proteínas Hedgehog/antagonistas & inibidores , Proteínas Hedgehog/genética , Técnicas In Vitro , Masculino , Camundongos , Dente Molar/anatomia & histologia , Dente Molar/efeitos dos fármacos , Dente Molar/crescimento & desenvolvimento , Fenótipo , Transdução de Sinais/efeitos dos fármacos , Dente/efeitos dos fármacos
3.
Nature ; 483(7390): 457-60, 2012 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-22419156

RESUMO

The Cretaceous-Paleogene mass extinction approximately 66 million years ago is conventionally thought to have been a turning point in mammalian evolution. Prior to that event and for the first two-thirds of their evolutionary history, mammals were mostly confined to roles as generalized, small-bodied, nocturnal insectivores, presumably under selection pressures from dinosaurs. Release from these pressures, by extinction of non-avian dinosaurs at the Cretaceous-Paleogene boundary, triggered ecological diversification of mammals. Although recent individual fossil discoveries have shown that some mammalian lineages diversified ecologically during the Mesozoic era, comprehensive ecological analyses of mammalian groups crossing the Cretaceous-Paleogene boundary are lacking. Such analyses are needed because diversification analyses of living taxa allow only indirect inferences of past ecosystems. Here we show that in arguably the most evolutionarily successful clade of Mesozoic mammals, the Multituberculata, an adaptive radiation began at least 20 million years before the extinction of non-avian dinosaurs and continued across the Cretaceous-Paleogene boundary. Disparity in dental complexity, which relates to the range of diets, rose sharply in step with generic richness and disparity in body size. Moreover, maximum dental complexity and body size demonstrate an adaptive shift towards increased herbivory. This dietary expansion tracked the ecological rise of angiosperms and suggests that the resources that were available to multituberculates were relatively unaffected by the Cretaceous-Paleogene mass extinction. Taken together, our results indicate that mammals were able to take advantage of new ecological opportunities in the Mesozoic and that at least some of these opportunities persisted through the Cretaceous-Paleogene mass extinction. Similar broad-scale ecomorphological inventories of other radiations may help to constrain the possible causes of mass extinctions.


Assuntos
Evolução Biológica , Dinossauros/fisiologia , Extinção Biológica , Mamíferos/fisiologia , Animais , Tamanho Corporal , Dieta/história , Dieta/veterinária , Fósseis , Herbivoria/fisiologia , História Antiga , Magnoliopsida/classificação , Magnoliopsida/fisiologia , Mamíferos/anatomia & histologia , Mamíferos/classificação , Filogenia , Fatores de Tempo , Dente/anatomia & histologia
4.
Sci Adv ; 10(32): eado4555, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39110800

RESUMO

We use synchrotron x-ray tomography of annual growth increments in the dental cementum of mammaliaforms (stem and crown fossil mammals) from three faunas across the Jurassic to map the origin of patterns of mammalian growth patterns, which are intrinsically related to mammalian endothermy. Although all fossils studied exhibited slower growth rates, longer life spans, and delayed sexual maturity relative to comparably sized extant mammals, the earliest crown mammals developed significantly faster growth rates in early life that reduced at sexual maturity, compared to stem mammaliaforms. Estimation of basal metabolic rates (BMRs) suggests that some fossil crown mammals had BMRs approaching the lowest rates of extant mammals. We suggest that mammalian growth patterns first evolved during their mid-Jurassic adaptive radiation, although growth remained slower than in extant mammals.


Assuntos
Evolução Biológica , Fósseis , Mamíferos , Animais , Cemento Dentário/anatomia & histologia , Síncrotrons , Filogenia , Metabolismo Basal
5.
Nat Commun ; 12(1): 6001, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34650041

RESUMO

Teeth act as tools for acquiring and processing food, thus holding a prominent role in vertebrate evolution. In mammals, dental-dietary adaptations rely on tooth complexity variations controlled by cusp number and pattern. Complexity increase through cusp addition has dominated the diversification of mammals. However, studies of Mammalia alone cannot reveal patterns of tooth complexity conserved throughout vertebrate evolution. Here, we use morphometric and phylogenetic comparative methods across fossil and extant squamates to show they also repeatedly evolved increasingly complex teeth, but with more flexibility than mammals. Since the Late Jurassic, multiple-cusped teeth evolved over 20 times independently from a single-cusped common ancestor. Squamates frequently lost cusps and evolved varied multiple-cusped morphologies at heterogeneous rates. Tooth complexity evolved in correlation with changes in plant consumption, resulting in several major increases in speciation. Complex teeth played a critical role in vertebrate evolution outside Mammalia, with squamates exemplifying a more labile system of dental-dietary evolution.


Assuntos
Evolução Biológica , Dente/fisiologia , Animais , Dieta , Fósseis , Mamíferos , Fenótipo , Filogenia , Vertebrados
6.
PLoS One ; 16(11): e0249743, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34735460

RESUMO

Cementum, the tissue attaching mammal tooth roots to the periodontal ligament, grows appositionally throughout life, displaying a series of circum-annual incremental features. These have been studied for decades as a direct record of chronological lifespan. The majority of previous studies on cementum have used traditional thin-section histological methods to image and analyse increments. However, several caveats have been raised in terms of studying cementum increments in thin-sections. Firstly, the limited number of thin-sections and the two-dimensional perspective they impart provide an incomplete interpretation of cementum structure, and studies often struggle or fail to overcome complications in increment patterns that complicate or inhibit increment counting. Increments have been repeatedly shown to both split and coalesce, creating accessory increments that can bias increment counts. Secondly, identification and counting of cementum increments using human vision is subjective, and it has led to inaccurate readings in several experiments studying individuals of known age. Here, we have attempted to optimise a recently introduced imaging modality for cementum imaging; X-ray propagation-based phase-contrast imaging (PPCI). X-ray PPCI was performed for a sample of rhesus macaque (Macaca mulatta) lower first molars (n = 10) from a laboratory population of known age. PPCI allowed the qualitative identification of primary/annual versus intermittent secondary increments formed by splitting/coalescence. A new method for semi-automatic increment counting was then integrated into a purpose-built software package for studying cementum increments, to count increments in regions with minimal complications. Qualitative comparison with data from conventional cementochronology, based on histological examination of tissue thin-sections, confirmed that X-ray PPCI reliably and non-destructively records cementum increments (given the appropriate preparation of specimens prior to X-ray imaging). Validation of the increment counting algorithm suggests that it is robust and provides accurate estimates of increment counts. In summary, we show that our new increment counting method has the potential to overcome caveats of conventional cementochronology approaches, when used to analyse three-dimensional images provided by X-ray PPCI.


Assuntos
Algoritmos , Cemento Dentário/diagnóstico por imagem , Dente Molar/diagnóstico por imagem , Síncrotrons , Tomografia Computadorizada por Raios X , Animais , Macaca mulatta
7.
J R Soc Interface ; 17(172): 20200538, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33234064

RESUMO

Cementum is a mineralized dental tissue common to mammals that grows throughout life, following a seasonally appositional rhythm. Each year, one thick translucent increment and one thin opaque increment is deposited, offering a near-complete record of an animal's life history. Male and female mammals exhibit significant differences in oral health, due to the contrasting effects of female versus male sex hormones. Oestrogen and progesterone have a range of negative effects on oral health that extends to the periodontium and cementum growth interface. Here, we use synchrotron radiation-based X-ray tomography to image the cementum of a sample of rhesus macaque (Macaca mulatta) teeth from individuals of known life history. We found that increased breeding history in females corresponds with increased increment tortuosity and less organized cementum structure, when compared to male and juvenile cementum. We quantified structural differences by measuring the greyscale 'texture' of cementum and comparing results using principal components analysis. Adult females and males occupy discrete regions of texture space with no overlap. Females with known pregnancy records also have significantly different cementum when compared with non-breeding and juvenile females. We conclude that several aspects of cementum structure and texture may reflect differences in sexual life history in primates.


Assuntos
Síncrotrons , Dente , Animais , Cemento Dentário/diagnóstico por imagem , Feminino , Macaca mulatta , Masculino , Tomografia por Raios X
8.
Nat Commun ; 11(1): 5121, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-33046697

RESUMO

Despite considerable advances in knowledge of the anatomy, ecology and evolution of early mammals, far less is known about their physiology. Evidence is contradictory concerning the timing and fossil groups in which mammalian endothermy arose. To determine the state of metabolic evolution in two of the earliest stem-mammals, the Early Jurassic Morganucodon and Kuehneotherium, we use separate proxies for basal and maximum metabolic rate. Here we report, using synchrotron X-ray tomographic imaging of incremental tooth cementum, that they had maximum lifespans considerably longer than comparably sized living mammals, but similar to those of reptiles, and so they likely had reptilian-level basal metabolic rates. Measurements of femoral nutrient foramina show Morganucodon had blood flow rates intermediate between living mammals and reptiles, suggesting maximum metabolic rates increased evolutionarily before basal metabolic rates. Stem mammals lacked the elevated endothermic metabolism of living mammals, highlighting the mosaic nature of mammalian physiological evolution.


Assuntos
Mamíferos/fisiologia , Répteis/fisiologia , Animais , Metabolismo Basal , Evolução Biológica , Fósseis/anatomia & histologia , Fósseis/história , História Antiga , Mamíferos/classificação , Filogenia , Tomografia por Raios X , Dente/anatomia & histologia , Dente/química
9.
R Soc Open Sci ; 5(11): 180903, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30564397

RESUMO

An increasing number of mammalian species have been shown to have a history of hybridization and introgression based on genetic analyses. Only relatively few fossils, however, preserve genetic material, and morphology must be used to identify the species and determine whether morphologically intermediate fossils could represent hybrids. Because dental and cranial fossils are typically the key body parts studied in mammalian palaeontology, here we bracket the potential for phenotypically extreme hybridizations by examining uniquely preserved cranio-dental material of a captive hybrid between grey and ringed seals. We analysed how distinct these species are genetically and morphologically, how easy it is to identify the hybrids using morphology and whether comparable hybridizations happen in the wild. We show that the genetic distance between these species is more than twice the modern human-Neanderthal distance, but still within that of morphologically similar species pairs known to hybridize. By contrast, morphological and developmental analyses show grey and ringed seals to be highly disparate, and that the hybrid is a predictable intermediate. Genetic analyses of the parent populations reveal introgression in the wild, suggesting that grey-ringed seal hybridization is not limited to captivity. Taken together, we postulate that there is considerable potential for mammalian hybridization between phenotypically disparate taxa.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA