Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 7: 11984, 2016 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-27329693

RESUMO

The bacterial mechanosensitive channel MscL gates in response to membrane tension as a result of mechanical force transmitted directly to the channel from the lipid bilayer. MscL represents an excellent model system to study the basic biophysical principles of mechanosensory transduction. However, understanding of the essential structural components that transduce bilayer tension into channel gating remains incomplete. Here using multiple experimental and computational approaches, we demonstrate that the amphipathic N-terminal helix of MscL acts as a crucial structural element during tension-induced gating, both stabilizing the closed state and coupling the channel to the membrane. We propose that this may also represent a common principle in the gating cycle of unrelated mechanosensitive ion channels, allowing the coupling of channel conformation to membrane dynamics.


Assuntos
Proteínas de Escherichia coli/metabolismo , Canais Iônicos/metabolismo , Mecanotransdução Celular , Membrana Celular/metabolismo , Biologia Computacional , Espectroscopia de Ressonância de Spin Eletrônica , Escherichia coli/metabolismo , Deleção de Genes , Ativação do Canal Iônico , Bicamadas Lipídicas/química , Lipossomos/química , Conformação Molecular , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Técnicas de Patch-Clamp , Domínios Proteicos , Termodinâmica
2.
Biochemistry ; 46(23): 6766-73, 2007 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-17500538

RESUMO

The mechanosensitive channel of small conductance (MscS) plays a critical role in the osmoregulation of prokaryotic cells. The crystal structure of MscS revealed a homoheptamer with three transmembrane segments and a large cytoplasmic domain. It has been suggested that the crystal structure depicts an open state, but its actual functional conformation remains controversial. In the pursuit of spectroscopical approaches to MscS gating, we determined that standard purification methods yield two forms of MscS, with a considerable amount of unfolded channel. Here, we present an improved high-yield purification method based on Escherichia coli expression and a biochemical characterization of the reconstituted channel, optimized to yield approximately 4 mg of a single monodisperse product. Upon reconstitution into lipid vesicles, MscS is unusually prone to lateral aggregation depending on the lipid composition, particularly after sample freezing. Strategies for minimizing MscS aggregation in two dimensions for spectroscopic analyses of gating have been developed.


Assuntos
Proteínas de Escherichia coli/química , Canais Iônicos/química , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Escherichia coli/fisiologia , Proteínas de Escherichia coli/isolamento & purificação , Proteínas de Escherichia coli/metabolismo , Canais Iônicos/isolamento & purificação , Canais Iônicos/metabolismo , Cinética , Lipossomos , Modelos Moleculares , Conformação Proteica , Software
3.
Nat Struct Mol Biol ; 14(11): 1062-9, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17922012

RESUMO

K+ channels undergo a time-dependent slow inactivation process that plays a key role in modulating cellular excitability. Here we show that in the prokaryotic proton-gated K+ channel KcsA, the number and strength of hydrogen bonds between residues in the selectivity filter and its adjacent pore helix determine the rate and extent of C-type inactivation. Upon channel activation, the interaction between residues at positions Glu71 and Asp80 promotes filter constriction parallel to the permeation pathway, which affects K+-binding sites and presumably abrogates ion conduction. Coupling between these two positions results in a quantitative correlation between their interaction strength and the stability of the inactivated state. Engineering of these interactions in the eukaryotic voltage-dependent K+ channel Kv1.2 suggests that a similar mechanistic principle applies to other K+ channels. These observations provide a plausible physical framework for understanding C-type inactivation in K+ channels.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Ativação do Canal Iônico/fisiologia , Canal de Potássio Kv1.2/química , Canal de Potássio Kv1.2/metabolismo , Canais de Potássio/química , Canais de Potássio/metabolismo , Conformação Proteica , Animais , Asparagina/metabolismo , Proteínas de Bactérias/genética , Cristalografia por Raios X , Histidina/metabolismo , Ligação de Hidrogênio , Canal de Potássio Kv1.2/genética , Lipossomos/química , Modelos Moleculares , Dados de Sequência Molecular , Oócitos/citologia , Oócitos/fisiologia , Técnicas de Patch-Clamp , Canais de Potássio/genética , Ratos , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA