Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mar Drugs ; 16(4)2018 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-29596370

RESUMO

Collagen is involved in the formation of complex fibrillar networks, providing the structural integrity of tissues. Its low immunogenicity and mechanical properties make this molecule a biomaterial that is extremely suitable for tissue engineering and regenerative medicine (TERM) strategies in human health issues. Here, for the first time, we performed a thorough screening of four different methods to obtain sponge collagenous fibrillar suspensions (FSs) from C. reniformis demosponge, which were then chemically, physically, and biologically characterized, in terms of protein, collagen, and glycosaminoglycans content, viscous properties, biocompatibility, and antioxidant activity. These four FSs were then tested for their capability to generate crosslinked or not thin sponge collagenous membranes (SCMs) that are suitable for TERM purposes. Two types of FSs, of the four tested, were able to generate SCMs, either from crosslinking or not, and showed good mechanical properties, enzymatic degradation resistance, water binding capacity, antioxidant activity, and biocompatibility on both fibroblast and keratinocyte cell cultures. Finally, our results demonstrate that it is possible to adapt the extraction procedure in order to alternatively improve the mechanical properties or the antioxidant performances of the derived biomaterial, depending on the application requirements, thanks to the versatility of C. reniformis extracellular matrix extracts.


Assuntos
Materiais Biocompatíveis , Colágeno/química , Teste de Materiais , Poríferos/química , Animais , Compostos de Bifenilo , Sequestradores de Radicais Livres , Membranas Artificiais , Microscopia Eletrônica de Varredura , Picratos
2.
Environ Res ; 150: 73-81, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27257827

RESUMO

The bivalve Mytilus galloprovincialis has proven as a suitable model invertebrate for evaluating the potential impact of nanoparticles (NPs) in the marine environment. In particular, in mussels, the immune system represents a sensitive target for different types of NPs. In environmental conditions, both NP intrinsic properties and those of the receiving medium will affect particle behavior and consequent bioavailability/uptake/toxicity. However, the evaluation of the biological effects of NPs requires additional understanding of how, once within the organism, NPs interact at the molecular level with cells in a physiological environment. In mammalian systems, different NPs associate with serum soluble components, organized into a "protein corona", which affects particle interactions with target cells. However, no information is available so far on the interactions of NPs with biological fluids of aquatic organisms. In this work, the influence of hemolymph serum (HS) on the in vitro effects of amino modified polystyrene NPs (PS-NH2) on Mytilus hemocytes was investigated. Hemocytes were incubated with PS-NH2 suspensions in HS (1, 5 and 50µg/mL) and the results were compared with those obtained in ASW medium. Cell functional parameters (lysosomal membrane stability, oxyradical production, phagocytosis) were evaluated, and morphological changes were investigated by TEM. The activation state of the signalling components involved in Mytilus immune response (p38 MAPK and PKC) was determined. The results show that in the presence of HS, PS-NH2 increased cellular damage and ROS production with respect to ASW medium. The effects were apparently mediated by disregulation of p38 MAPK signalling. The formation of a PS-NH2-protein corona in HS was investigated by centrifugation, and 1D- gel electrophoresis and nano-HPLC-ESI-MS/MS. The results identified the Putative C1q domain containing protein (MgC1q6) as the only component of the PS-NH2 hard protein corona in Mytilus hemolymph. These data represent the first evidence for the formation of a NP bio-corona in aquatic organisms and underline the importance of the recognizable biological identity of NPs in physiological exposure medium when testing their potential impact environmental model organisms. Although the results obtained in vitro do not entirely reflect a realistic exposure scenario and the more complex formation of a bio-corona that is likely to occur in vivo, these data will contribute to a better understanding of the effects of NPs in marine invertebrates.


Assuntos
Hemócitos/efeitos dos fármacos , Mytilus/efeitos dos fármacos , Nanopartículas/toxicidade , Poliestirenos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Cátions/toxicidade , Hemócitos/metabolismo , Hemolinfa/efeitos dos fármacos , Hemolinfa/metabolismo , Mytilus/metabolismo , Proteínas/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-35954723

RESUMO

Aluminum is an element found in nature and in cosmetic products. It can interfere with the metabolism of other cations, thus inducing gastrointestinal disorder. In cosmetics, aluminum is used in antiperspirants, lipsticks, and toothpastes. The aim of this work is to investigate aluminum bioavailability after accidental oral ingestion derived from the use of a toothpaste containing a greater amount of aluminum hydroxide than advised by the Scientific Committee on Consumer Safety (SCCS). To simulate in vitro toothpaste accidental ingestion, the INFOGEST model was employed, and the amount of aluminum was measured through the ICP-AES analysis. Tissue barrier integrity was analyzed by measuring transepithelial electric resistance, and the tissue architecture was checked through light microscopy. The margin of safety was also calculated. Overall, our results indicate that the acute exposure to aluminum accidentally ingested from toothpastes is safe for the final user, even in amounts higher than SCCS indications.


Assuntos
Alumínio , Cosméticos , Disponibilidade Biológica , Qualidade de Produtos para o Consumidor , Cosméticos/toxicidade , Cremes Dentais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA