Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Mol Biol ; 296(2): 613-32, 2000 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-10669612

RESUMO

Reverse transcriptase (RT) serves as the replicative polymerase for retroviruses by using RNA and DNA-directed DNA polymerase activities coupled with a ribonuclease H activity to synthesize a double-stranded DNA copy of the single-stranded RNA genome. In an effort to obtain detailed structural information about nucleic acid interactions with reverse transcriptase, we have determined crystal structures at 2.3 A resolution of an N-terminal fragment from Moloney murine leukemia virus reverse transcriptase complexed to blunt-ended DNA in three distinct lattices. This fragment includes the fingers and palm domains from Moloney murine leukemia virus reverse transcriptase. We have also determined the crystal structure at 3.0 A resolution of the fragment complexed to DNA with a single-stranded template overhang resembling a template-primer substrate. Protein-DNA interactions, which are nearly identical in each of the three lattices, involve four conserved residues in the fingers domain, Asp114, Arg116, Asn119 and Gly191. DNA atoms involved in the interactions include the 3'-OH group from the primer strand and minor groove base atoms and sugar atoms from the n-2 and n-3 positions of the template strand, where n is the template base that would pair with an incoming nucleotide. The single-stranded template overhang adopts two different conformations in the asymmetric unit interacting with residues in the beta4-beta5 loop (beta3-beta4 in HIV-1 RT). Our fragment-DNA complexes are distinct from previously reported complexes of DNA bound to HIV-1 RT but related in the types of interactions formed between protein and DNA. In addition, the DNA in all of these complexes is bound in the same cleft of the enzyme. Through site-directed mutagenesis, we have substituted residues that are involved in binding DNA in our crystal structures and have characterized the resulting enzymes. We now propose that nucleic acid binding to the fingers domain may play a role in translocation of nucleic acid during processive DNA synthesis and suggest that our complex may represent an intermediate in this process.


Assuntos
Primers do DNA/metabolismo , Vírus da Leucemia Murina de Moloney/enzimologia , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , DNA Polimerase Dirigida por RNA/química , DNA Polimerase Dirigida por RNA/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação , Biopolímeros/química , Biopolímeros/genética , Biopolímeros/metabolismo , Sequência Conservada/genética , Cristalização , Cristalografia por Raios X , DNA/biossíntese , DNA/química , DNA/genética , DNA/metabolismo , Primers do DNA/química , Primers do DNA/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Transcriptase Reversa do HIV/química , Transcriptase Reversa do HIV/metabolismo , Ligação de Hidrogênio , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Conformação de Ácido Nucleico , Fragmentos de Peptídeos/genética , Estrutura Terciária de Proteína , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , DNA Polimerase Dirigida por RNA/genética , Coelhos , Moldes Genéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA