Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Small ; 20(38): e2309616, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38564782

RESUMO

Radiolabeling and nuclear imaging techniques are used to investigate the biodistribution patterns of the soft and hard protein corona around poly (lactic-co-glycolic acid) nanoparticles (PLGA NPs) after administration to healthy mice. Soft and hard protein coronas of 131I-labeled BSA or 131I-labeled serum are formed on PLGA NPs functionalized with either polyehtylenimine (PEI) or bovine serum albumin (BSA). The exchangeability of hard and soft corona is assessed in vitro by gamma counting exposing PLGA NPs with corona to non-labeled BSA, serum, or simulated body fluid. PEI PLGA NPs form larger and more stable coronas than BSA PLGA NPs. Soft coronas are more exchangeable than hard ones. The in vivo fate of PEI PLGA NPs coated with preformed 18F-labeled BSA hard and soft coronas is assessed by positron emission tomography (PET) following intravenous administration. While the soft corona shows a biodistribution similar to free 18F BSA with high activity in blood and kidney, the hard corona follows patterns characteristic of nanoparticles, accumulating in the lungs, liver, and spleen. These results show that in vivo fates of soft and hard corona are different, and that soft corona is more easily exchanged with proteins from the body, while hard corona is largely retained on the nanoparticle surface.


Assuntos
Nanopartículas , Tomografia por Emissão de Pósitrons , Coroa de Proteína , Soroalbumina Bovina , Animais , Coroa de Proteína/química , Tomografia por Emissão de Pósitrons/métodos , Nanopartículas/química , Camundongos , Distribuição Tecidual , Soroalbumina Bovina/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Bovinos , Modelos Animais
2.
Int J Mol Sci ; 22(2)2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33451063

RESUMO

The development of multifunctional drug delivery systems combining two or more nanoparticle-mediated therapies for efficient cancer treatment is highly desired. To face this challenge, a photothermally active polydopamine (PDA) nanoparticle-based platform was designed for the loading of chemotherapeutic drug and targeting of cancer cells. PDA spheres were first functionalized with polyamidoamine (PAMAM) dendrimers followed by the conjugation with polyethylene glycol (PEG) moieties and folic acid (FA) targeting ligand. The anticancer drug doxorubicin (DOX) was then absorbed on the particle surface. We performed the physico-chemical characterization of this versatile material and we assessed further its possible application in chemo- and photothermal therapy using liver cancer cell model. These nanoparticles exhibited high near-infrared photothermal conversion efficacy and allowed for loading of the drug, which upon release in specifically targeted cancer cells suppressed their growth. Using cell proliferation, membrane damage, apoptosis, and oxidative stress assays we demonstrated high performance of this nanosystem in cancer cell death induction, providing a novel promising approach for cancer therapy.


Assuntos
Antineoplásicos/administração & dosagem , Dendrímeros/química , Portadores de Fármacos/química , Indóis/administração & dosagem , Nanopartículas/química , Terapia Fototérmica , Poliaminas/química , Polímeros/administração & dosagem , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Terapia Combinada , Relação Dose-Resposta a Droga , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Estresse Oxidativo/efeitos dos fármacos , Terapia Fototérmica/métodos
3.
Pharm Res ; 35(2): 32, 2018 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-29368067

RESUMO

PURPOSE: The study discusses the value of electrospun cilostazol-loaded (CIL) polymer structures for potential vascular implant applications. METHODS: Biodegradable polycaprolactone (PCL) fibers were produced by electrospinning on a rotating drum collector. Three different concentrations of CIL: 6.25%, 12.50% and 18.75% based on the amount of polymer, were incorporated into the fibers. The fibers were characterized by their size, shape and orientation. Materials characterization was carried out by Fourier Transformed Infrared spectroscopy (FTIR), Raman spectroscopy, differential scanning calorimetry (DSC) and X-ray diffraction (XRD). In vitro drug release study was conducted using flow-through cell apparatus (USP 4). RESULTS: Three-dimensional structures characterized by fibers diameter ranging from 0.81 to 2.48 µm were in the range required for cardiovascular application. DSC and XRD confirmed the presence of CIL in the electrospun fibers. FTIR and Raman spectra confirmed CIL polymorphic form. Elastic modulus values for PCL and the CIL-loaded PCL fibers were in the range from 0.6 to 1.1 GPa. The in vitro release studies were conducted and revealed drug dissolution in combination with diffusion and polymer relaxation as mechanisms for CIL release from the polymer matrix. CONCLUSIONS: The release profile of CIL and nanomechanical properties of all formulations of PCL fibers demonstrate that the cilostazol loaded PCL fibers are an efficient delivery system for vascular implant application.


Assuntos
Prótese Vascular , Cilostazol/administração & dosagem , Sistemas de Liberação de Medicamentos , Inibidores da Agregação Plaquetária/administração & dosagem , Trombose/prevenção & controle , Aterosclerose/cirurgia , Implante de Prótese Vascular/efeitos adversos , Cilostazol/farmacocinética , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Humanos , Inibidores da Agregação Plaquetária/farmacocinética , Poliésteres/química , Trombose/etiologia
4.
Artif Cells Nanomed Biotechnol ; 52(1): 321-333, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38795050

RESUMO

Polydopamine (PDA) stands as a versatile material explored in cancer nanomedicine for its unique properties, offering opportunities for multifunctional drug delivery platforms. This study explores the potential of utilizing a one-pot synthesis to concurrently integrate Fe, Gd and Mn ions into porous PDA-based theranostic drug delivery platforms called Ferritis, Gadolinis and Manganis, respectively. Our investigation spans the morphology, magnetic properties, photothermal characteristics and cytotoxicity profiles of those potent nanoformulations. The obtained structures showcase a spherical morphology, robust magnetic response and promising photothermal behaviour. All of the presented nanoparticles (NPs) display pronounced paramagnetism, revealing contrasting potential for MRI imaging. Relaxivity values, a key determinant of contrast efficacy, demonstrated competitive or superior performance compared to established, used contrasting agents. These nanoformulations also exhibited robust photothermal properties under near infra-red irradiation, showcasing their possible application for photothermal therapy of cancer. Our findings provide insights into the potential of metal-doped PDA NPs for cancer theranostics.


Assuntos
Indóis , Imageamento por Ressonância Magnética , Polímeros , Indóis/química , Humanos , Polímeros/química , Meios de Contraste/química , Nanopartículas/química , Nanopartículas/uso terapêutico , Manganês/química , Nanomedicina Teranóstica/métodos
5.
ACS Appl Mater Interfaces ; 16(33): 43302-43316, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39111771

RESUMO

Photothermal therapy (PTT) is a method for eradicating tumor tissues through the use of photothermal materials and photosensitizing agents that absorb light energy from laser sources and convert it into heat, which selectively targets and destroys cancer cells while sparing healthy tissue. MXenes have been intensively investigated as photosensitizing agents for PTT. However, achieving the selectivity of MXenes to the tumor cells remains a challenge. Specific antibodies (Ab) against tumor antigens can achieve homing of the photosensitizing agents toward tumor cells, but their immobilization on MXene received little attention. Here, we offer a strategy for the selective ablation of melanoma cells using MXene-polydopamine-antiCEACAM1 Ab complexes. We coated Ti3C2Tx MXene with polydopamine (PDA), a natural compound that attaches Ab to the MXene surface, followed by conjugation with an anti-CEACAM1 Ab. Our experiments confirm the biocompatibility of the Ti3C2Tx-PDA and Ti3C2Tx-PDA-antiCEACAM1 Ab complexes across various cell types. We also established a protocol for the selective ablation of CEACAM1-positive melanoma cells using near-infrared irradiation. The obtained complexes exhibit high selectivity and efficiency in targeting and eliminating CEACAM1-positive melanoma cells while sparing CEACAM1-negative cells. These results demonstrate the potential of MXene-PDA-Ab complexes for cancer therapy. They underline the critical role of targeted therapies in oncology, offering a promising avenue for the precise and safe treatment of melanoma and possibly other cancers characterized by specific biomarkers. Future research will aim to refine these complexes for clinical use, paving the way for new strategies for cancer treatment.


Assuntos
Indóis , Melanoma , Polímeros , Polímeros/química , Indóis/química , Indóis/farmacologia , Humanos , Melanoma/patologia , Melanoma/tratamento farmacológico , Melanoma/terapia , Linhagem Celular Tumoral , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Titânio/química , Animais , Camundongos , Antígeno Carcinoembrionário/imunologia , Terapia Fototérmica
6.
Adv Mater ; 34(6): e2106314, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34847272

RESUMO

Implant-related microbial infection is a challenging clinical problem, and its treatment requires efficient eradication of the biofilm from the implant surface. Near-infrared (NIR)-responsive strategies are proposed as an emerging efficient antibacterial therapy. However, the utilization of photosensitizers or photocatalytic/photothermal nanomaterials in the available approach likely induces high potential risks of interfacial deterioration and biosafety compromise. Herein, a TiO2 /TiO2- x metasurface with potent NIR-responsive antibacterial activity is produced on a Ti alloy implant by a newly invented topochemical conversion-based alkaline-acid bidirectional hydrothermal method (aaBH). Electromagnetic simulations prove that NIR absorption and near-field distribution of the metasurface can be tuned by the dimension and arrangement of the nanostructural unit. Promising antibacterial efficacy is proved by both in vitro and in vivo tests, with low-power NIR irradiation for 10 min. Besides, the designed nanostructure in the metasurface itself also shows excellence in enhancing the adhesion-related gene expression of human gingival fibroblasts that are exposed to 10 min of NIR irradiation, proving the potent nanostructure-induced biological effects. This work provides a biosafe and upscalable metasurfacing approach with extraordinary capacity of manipulating light adsorption, photocatalysis, and biological properties.


Assuntos
Fotoquimioterapia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Titânio/química , Titânio/farmacologia
7.
Mater Sci Eng C Mater Biol Appl ; 118: 111401, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33255004

RESUMO

The precise and rapid detection of hazardous molecules, microorganisms, pollutants, and toxins currently remains a global challenge. Aflatoxin B1 (AFB1) is a toxic and dangerous product of fungi that considered as cancerogenic, mutagenic, and immunosuppressive for humans and animals. Therefore, the screening of AFB1 in food and beverages plays an important role in preventing foodborne illnesses. In this study, AFB1 molecules were detected in a microfluidic device with integrated polyacrylonitrile/zinc oxide (PAN/ZnO) nanofibers fabricated via a combination of the electrospinning, and atomic layer deposition (ALD) techniques. The structural and optical analyses of PAN/ZnO nanofibers were performed and samples with the most suitable properties were utilized for AFB1 detection. In order to obtain the biorecognition layer towards AFB1, PAN/ZnO samples were modified by (3-Aminopropyl) triethoxysilane (APTES), and glutaraldehyde (GA), bovine serum albumin (BSA) and monoclonal antibodies (Anti-AFB1). Subsequently, photoluminescence (PL)-based immunosensor was integrated into a microfluidic cell and tested for AFB1 detection. The mechanism of PL changes caused by AFB1 & Anti-AFB1 complex formation was analyzed and developed. The proposed approach enables the detection of AFB1 with the lowest concentration (LOD) of about 39 pg/ml, while the sensitivity range was evaluated as 0.1-20 ng/ml. The obtained values of LOD and sensitivity, as well as the simplicity of the detection method, make this approach a prospect for further application.


Assuntos
Técnicas Biossensoriais , Nanofibras , Óxido de Zinco , Resinas Acrílicas , Aflatoxina B1/análise , Animais , Contaminação de Alimentos/análise , Humanos , Imunoensaio , Limite de Detecção
8.
Mater Horiz ; 8(3): 912-924, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34821321

RESUMO

Nanoscale manipulation of material surfaces can create extraordinary properties, holding great potential for modulating the implant-bio interface for enhanced performance. In this study, a green, simple and biocompatible nanosurfacing approach based on weak alkalinity-activated solid-state dewetting (AAD) was for the first time developed to nano-manipulate the Ti6Al4V surface by atomic self-rearrangement. AAD treatment generated quasi-periodic titanium oxide nanopimples with high surface energy. The nanopimple-like nanostructures enhanced the osteogenic activity of osteoblasts, facilitated M2 polarization of macrophages, and modulated the cross-talk between osteoblasts and macrophages, which collectively led to significant strengthening of in vivo bone-implant interfacial bonding. In addition, the titanium oxide nanopimples strongly adhered to the Ti alloy, showing resistance to tribocorrosion damage. The results suggest strong nano-bio interfacial effects, which was not seen for the control Ti alloy processed through traditional thermal oxidation. Compared to other nanostructuring strategies, the AAD technique shows great potential to integrate high-performance, functionality, practicality and scalability for surface modification of medical implants.


Assuntos
Ligas , Titânio , Osteoblastos , Osteogênese , Próteses e Implantes
9.
Mater Sci Eng C Mater Biol Appl ; 118: 111525, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33255078

RESUMO

Synthetic polymers are widely employed for bone tissue engineering due to their tunable physical properties and biocompatibility. Inherently, most of these polymers display poor antimicrobial properties. Infection at the site of implantation is a major cause for failure or delay in bone healing process and the development of antimicrobial polymers is highly desired. In this study, silver nanoparticles (AgNps) were synthesized in polycaprolactone (PCL) solution by in-situ reduction and further extruded into PCL/AgNps filaments. Customized 3D structures were fabricated using the PCL/AgNps filaments through 3D printing technique. As demonstrated by scanning electron microscopy, the 3D printed scaffolds exhibited interconnected porous structures. Furthermore, X-ray photoelectron spectroscopy analysis revealed the reduction of silver ions. Transmission electron microscopy along with energy-dispersive X-ray spectroscopy analysis confirmed the formation of silver nanoparticles throughout the PCL matrix. In vitro enzymatic degradation studies showed that the PCL/AgNps scaffolds displayed 80% degradation in 20 days. The scaffolds were cytocompatible, as assessed using hFOB cells and their antibacterial activity was demonstrated on Escherichia coli. Due to their interconnected porous structure, mechanical and antibacterial properties, these cytocompatible multifunctional 3D printed PCL/AgNps scaffolds appear highly suitable for bone tissue engineering.


Assuntos
Nanopartículas Metálicas , Engenharia Tecidual , Antibacterianos/farmacologia , Poliésteres , Impressão Tridimensional , Prata/farmacologia , Alicerces Teciduais
10.
ACS Appl Mater Interfaces ; 12(6): 7840-7853, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-31977186

RESUMO

The development of tissue scaffolds able to provide proper and accelerated regeneration of tissue is a main task of tissue engineering. We developed a nanocomposite gel that may be used as an injectable therapeutic scaffold. The nanocomposite gel is based on biocompatible gelling agents with embedded nanoparticles (iron oxide, silver, and hydroxyapatite) providing therapeutic properties. We have investigated the microstructure of the nanocomposite gel exposed to different substrates (porous materials and biological tissue). Here we show that the nanocomposite gel has the ability to self-reassemble mimicking the substrate morphology: exposition on porous mineral substrate caused reassembling of nanocomposite gel into 10× smaller scale structure; exposition to a section of humerus cortical bone decreased the microstructure scale more than twice (to ≤3 µm). The reassembling happens through a transitional layer which exists near the phase separation boundary. Our results impact the knowledge of gels explaining their abundance in biological organisms from the microstructural point of view. The results of our biological experiments showed that the nanocomposite gel may find diverse applications in the biomedical field.


Assuntos
Nanocompostos/química , Nanogéis/química , Engenharia Tecidual/instrumentação , Alicerces Teciduais/química , Animais , Materiais Biocompatíveis/química , Transplante Ósseo/instrumentação , Úmero/química , Porosidade , Suínos
11.
Int J Nanomedicine ; 15: 7923-7936, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33116509

RESUMO

INTRODUCTION: We present a multimodal nanoplatforms for the treatment of hepatocellular carcinoma (HCC) in vitro. The nanoplatforms are based on polydopamine (PDA)-coated magnetite nanoparticles (NPs) and spheres (sMAG) with PAMAM dendrimers and functionalized with NHS-PEG-Mal (N-hydroxysuccinimide-polyethylene glycol-maleimide) linker, which allows their functionalization with a folic acid derivative. The nanomaterials bearing a folic acid-targeting moiety show high efficiency in killing cancer cells in the dual chemo- and photothermal therapy (CT-PTT) of the liver cancer cells in comparison to modalities performed separately. MATERIALS AND METHODS: All materials are characterized in detail with transmission electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, zeta potential and magnetic measurements. Also, photothermal properties were determined under irradiation of nanoparticles with laser beam of 2 W/cm2. The nontoxicity of nanoparticles with doxorubicin and without was checked by WST and LIVE/DEAD assay. Those tests were also used to evaluate materials bearing folic acid and anticancer drug in combined chemo- and photothermal therapy of HCC. Further, the generation of reactive oxygen species profile was also evaluated using flow cytometry test. RESULTS: Both NPs and sMAG showed high photothermal properties. Nevertheless, the higher photothermal response was found for magnetic spheres. Materials of concentration above 10 µg/mL reveal that their activity was comparable to free doxorubicin. It is worth highlighting that a functionalized magnetic sphere with DOXO more strongly affected the HepG2 cells than smaller functionalized nanoparticles with DOXO in the performed chemotherapy. This can be attributed to the larger size of particles and a different method of drug distribution. In the further stage, both materials were assessed in combined chemo- and photothermal therapy (CT-PTT) which revealed that magnetic spheres were also more effective in this modality than smaller nanoparticles. CONCLUSION: Here, we present two types of nanomaterials (nanoparticles and spheres) based on polydopamine and PAMAM dendrimers g.5.0 functionalized with NHS-PEG-Mal linker terminated with folic acid for in vitro hepatocellular carcinoma treatment. The obtained materials can serve as efficient agents for dual chemo- and photothermal therapy of HCC. We also proved that PDA-coated magnetic spheres were more efficient in therapies based on near-infrared irradiation because determined cell viabilities for those materials are lower than for the same concentrations of nanomaterials based on small magnetic nanoparticles.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Carcinoma Hepatocelular/terapia , Portadores de Fármacos/química , Neoplasias Hepáticas/terapia , Nanopartículas de Magnetita/química , Fototerapia , Animais , Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Linhagem Celular Tumoral , Terapia Combinada , Dendrímeros/química , Doxorrubicina/química , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Liberação Controlada de Fármacos , Humanos , Indóis/química , Neoplasias Hepáticas/tratamento farmacológico , Polietilenoglicóis/química , Polímeros/química
12.
Mater Sci Eng C Mater Biol Appl ; 96: 166-175, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30606522

RESUMO

An ideal dental implant coating should provide a highly protective interface and an osteogenic function. Inspired by the excellent biocompatibility and anti-corrosion of the Nb element, we produced Nb-based oxide, nitride and carbide films as well as the pure metal Nb film for surface enhancement of dental implants, and compare the impact of the nonmetal elements on the electrochemical, tribological, tribo-corrosion and biological performance of the coated implants. The NbC film, composed of a single-phased subniobium carbide, displays mechanical advantages and anticorrosion characteristics that are distinguished from the other composite films, highlighting its potential outstanding protective efficiency for dental implants against corrosion and wear. Rat bone marrow mesenchymal stem cells (rBMSCS) were found more readily to attach, grow and osteogenically differentiate on the NbC film compared to the Nb, NbO and NbN films, indicating the osteogenesis potential of the NbC film. Taken all the results together, it can be concluded that the NbC film have the highest potential for dental implant surface modification.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis , Implantes Dentários , Membranas Artificiais , Células-Tronco Mesenquimais/metabolismo , Nióbio , Osteogênese/efeitos dos fármacos , Animais , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Células-Tronco Mesenquimais/citologia , Nióbio/química , Nióbio/farmacologia , Ratos , Ratos Sprague-Dawley
13.
Colloids Surf B Biointerfaces ; 173: 698-708, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30384266

RESUMO

Here we report the synthesis of multifunctional nanocarriers based on PAMAM dendrimers generation (G) 4.0, 5.0 and 6.0 fixed to polydopamine (PDA) coated magnetite nanoparticles (Fe3O4). Synthesized nanoplatforms were characterized by transmission electron microscopy (TEM), the electrokinetic (zeta) potential, Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and magnetic resonance imaging (MRI). Further, we show as a proof of concept that nanocarriers functionalized with G 5.0 could be successfully applied in combined chemo- and photothermal therapy (CT-PTT) of the liver cancer cells. The cooperative effect of the modalities mentioned above led to higher mortality of cancer cells when compared to their individual performance. Moreover, the performed in vitro studies revealed that the application of dual therapy triggered the desired cell death mechanism-apoptosis. Furthermore, performed tests using Magnetic Resonance Imaging (MRI) showed that our materials have competitive contrast properties. Overall, the functionality of dendrimers has been extended by merging them with magnetic nanoparticles resulting in multifunctional hybrid nanostructures that are promising smart drug delivery system for cancer therapy.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Dendrímeros/química , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas de Magnetita/química , Antibióticos Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Meios de Contraste/química , Doxorrubicina/química , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Óxido Ferroso-Férrico/química , Células Hep G2 , Humanos , Indóis/química , Raios Infravermelhos , Cinética , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/ultraestrutura , Fototerapia/métodos , Polímeros/química , Nanomedicina Teranóstica/métodos
14.
J Colloid Interface Sci ; 536: 310-327, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30380431

RESUMO

Currently marketed drug-eluting stents are non-selective in their anti-restenotic action. New active substance introduction to polymeric stents and vascular grafts can promote early re-endothelialization, crucial in preventing implant restenosis. Additionally, managing material hydrophobicity by blending synthetic polymers limits adverse effects on bulk properties and controls active substance release. However, the influence of hydrophilic synthetic polymer on human cells in the cardiovascular system remains to be determined. In this report, effects of both poly(ε-caprolactone) (PCL) fibers hydrophilization with Pluronic P123 (P123) and cilostazol (CIL) loading were studied. Physicochemical and mechanical properties of electrospun tubular structures produced from PCL and PCL/P123 fibers with and without CIL were investigated and compared. Release profiles studies and in vitro cell proliferation assays of electrospun materials were conducted. It was found that P123 located near the surface of electrospun fibers increased the rate of CIL release. PCL formulation sustained human umbilical vein endothelial cells (HUVEC) growth for 48 h. Despite improved hydrophilicity, PCL/P123 formulations were found to reduce HUVEC viability. Both PCL and PCL/P123 materials reduced primary aortic smooth muscle cells (PASM) viability after 48 h. In PCL formulations containing CIL, drug release caused a decrease in PASM viability. P123 blending with PCL was found to be as a useful pre-fabrication technique for modulating surface hydrophobicity of electrospun materials and the release profile of incorporated active substance. The cytotoxicity of P123 was evaluated to improve the design of drug-loaded vascular grafts for cardiovascular applications.


Assuntos
Sistema Cardiovascular/efeitos dos fármacos , Cilostazol/química , Liberação Controlada de Fármacos/efeitos dos fármacos , Poloxaleno/química , Poliésteres/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Músculo Liso Vascular/efeitos dos fármacos , Tamanho da Partícula , Poloxaleno/farmacologia , Propriedades de Superfície
15.
Toxicol In Vitro ; 44: 256-265, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28754539

RESUMO

Synthesis of magnetic nanoparticles and magnetic nanoclusters was performed by the co-precipitation method or solvothermal synthesis, respectively, followed by oxidative polymerization of dopamine, resulting in a polydopamine (PDA) shell. The nanomaterials obtained were described using TEM, FTIR and magnetic measurements. For the first time, cyto- and genotoxicity studies of polydopamine-coated nanostructures were performed on cancer and normal cell lines, providing in-depth insight into the toxicity of such materials. The tests conducted, e.g. ROS, apoptosis and DNA double-break of the nanomaterials obtained revealed the low toxicity of these structures. Thus, these results prove the biocompatibility and low genotoxicity of these materials and provide new data on the toxicity of PDA-coated materials, which is of great importance for their biomedical application.


Assuntos
Indóis/toxicidade , Nanopartículas de Magnetita/toxicidade , Polímeros/toxicidade , Apoptose/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Dano ao DNA , Humanos , Fenômenos Magnéticos , Nanopartículas de Magnetita/ultraestrutura , Microscopia Eletrônica de Transmissão , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA