RESUMO
MORC2 encodes an ATPase that plays a role in chromatin remodeling, DNA repair, and transcriptional regulation. Heterozygous variants in MORC2 have been reported in individuals with autosomal-dominant Charcot-Marie-Tooth disease type 2Z and spinal muscular atrophy, and the onset of symptoms ranges from infancy to the second decade of life. Here, we present a cohort of 20 individuals referred for exome sequencing who harbor pathogenic variants in the ATPase module of MORC2. Individuals presented with a similar phenotype consisting of developmental delay, intellectual disability, growth retardation, microcephaly, and variable craniofacial dysmorphism. Weakness, hyporeflexia, and electrophysiologic abnormalities suggestive of neuropathy were frequently observed but were not the predominant feature. Five of 18 individuals for whom brain imaging was available had lesions reminiscent of those observed in Leigh syndrome, and five of six individuals who had dilated eye exams had retinal pigmentary abnormalities. Functional assays revealed that these MORC2 variants result in hyperactivation of epigenetic silencing by the HUSH complex, supporting their pathogenicity. The described set of morphological, growth, developmental, and neurological findings and medical concerns expands the spectrum of genetic disorders resulting from pathogenic variants in MORC2.
Assuntos
Adenosina Trifosfatases/genética , Anormalidades Craniofaciais/genética , Transtornos do Crescimento/genética , Mutação/genética , Transtornos do Neurodesenvolvimento/genética , Fatores de Transcrição/genética , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Doenças Genéticas Inatas/genética , Heterozigoto , Humanos , Lactente , Deficiência Intelectual/genética , Masculino , Microcefalia/genética , Pessoa de Meia-Idade , Fenótipo , Adulto JovemRESUMO
CHARGE syndrome is a well-established multiple-malformation syndrome with distinctive consensus diagnostic criteria. Characteristic associated anomalies include ocular coloboma, choanal atresia, cranial nerve defects, distinctive external and inner ear abnormalities, hearing loss, cardiovascular malformations, urogenital anomalies, and growth retardation. Recently, mutations of the chromodomain helicase DNA-binding protein gene CHD7 were reported to be a major cause of CHARGE syndrome. We sequenced the CHD7 gene in 110 individuals who had received the clinical diagnosis of CHARGE syndrome, and we detected mutations in 64 (58%). Mutations were distributed throughout the coding exons and conserved splice sites of CHD7. Of the 64 mutations, 47 (73%) predicted premature truncation of the protein. These included nonsense and frameshift mutations, which most likely lead to haploinsufficiency. Phenotypically, the mutation-positive group was more likely to exhibit cardiovascular malformations (54 of 59 in the mutation-positive group vs. 30 of 42 in the mutation-negative group; P=.014), coloboma of the eye (55 of 62 in the mutation-positive group vs. 30 of 43 in the mutation-negative group; P=.022), and facial asymmetry, often caused by seventh cranial nerve abnormalities (36 of 56 in the mutation-positive group vs. 13 of 39 in the mutation-negative group; P=.004). Mouse embryo whole-mount and section in situ hybridization showed the expression of Chd7 in the outflow tract of the heart, optic vesicle, facio-acoustic preganglion complex, brain, olfactory pit, and mandibular component of the first branchial arch. Microarray gene-expression analysis showed a signature pattern of gene-expression differences that distinguished the individuals with CHARGE syndrome with CHD7 mutation from the controls. We conclude that cardiovascular malformations, coloboma, and facial asymmetry are common findings in CHARGE syndrome caused by CHD7 mutation.
Assuntos
Anormalidades Múltiplas/genética , Coloboma/genética , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Assimetria Facial/genética , Cardiopatias Congênitas/genética , Anormalidades Múltiplas/diagnóstico , Adolescente , Animais , Criança , Pré-Escolar , Análise Mutacional de DNA , Embrião de Mamíferos/química , Embrião de Mamíferos/metabolismo , Feminino , Genótipo , Humanos , Hibridização in Situ Fluorescente , Masculino , Camundongos , Dados de Sequência Molecular , Mutação , Linhagem , Fenótipo , Sítios de Splice de RNA/genética , RNA Mensageiro/análise , RNA Mensageiro/metabolismo , SíndromeRESUMO
VDAC, a major protein of the mitochondrial outer membrane, forms voltage-dependent, anion-selective channels permeable to most metabolites. Although multiple isoforms of VDAC have been found in different organisms, only one isoform (porin/DVDAC) has been previously reported for Drosophila melanogaster. We have examined the physiological properties of three other Drosophila proteins (CG17137, CG17139, and CG17140) whose primary sequences have significant homology to DVDAC. A comparison of their hydropathy profiles (beta-pattern) with known VDAC sequences indicates the same fundamental folding pattern but with major insertions and deletions. The ability of these proteins to form channels was tested on planar membranes and liposomes. Channel activity was observed with varying degrees of similarity to VDAC. Two of these proteins (CG17137 and CG17140) produced channels with anionic selectivity in the open state. Sometimes channels exhibited closure and voltage gating, but for CG17140 this occurred at much higher voltages than is typical for VDAC. CG17139 was not able to form channels. DVDAC and CG17137 were able to rescue the temperature-sensitive conditional-lethal phenotype of VDAC-deficient yeast, whereas CG17139 and CG17140 demonstrated no complementation. Similar structure and channel formation indicate that VDAC-like proteins are part of the larger VDAC family but the modifications are indicative of specialized functions.
Assuntos
Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Porinas/química , Porinas/metabolismo , Análise de Sequência de Proteína , Sequência de Aminoácidos , Permeabilidade da Membrana Celular/fisiologia , Ativação do Canal Iônico/fisiologia , Lipossomos/química , Lipossomos/metabolismo , Dados de Sequência Molecular , Porinas/classificação , Isoformas de Proteínas/química , Isoformas de Proteínas/classificação , Isoformas de Proteínas/metabolismo , Homologia de Sequência de Aminoácidos , Canais de Ânion Dependentes de VoltagemRESUMO
The multidomain proapoptotic molecules BAK or BAX are required to initiate the mitochondrial pathway of apoptosis. How cells maintain the potentially lethal proapoptotic effector BAK in a monomeric inactive conformation at mitochondria is unknown. In viable cells, we found BAK complexed with mitochondrial outer-membrane protein VDAC2, a VDAC isoform present in low abundance that interacts specifically with the inactive conformer of BAK. Cells deficient in VDAC2, but not cells lacking the more abundant VDAC1, exhibited enhanced BAK oligomerization and were more susceptible to apoptotic death. Conversely, overexpression of VDAC2 selectively prevented BAK activation and inhibited the mitochondrial apoptotic pathway. Death signals activate "BH3-only" molecules such as tBID, BIM, or BAD, which displace VDAC2 from BAK, enabling homo-oligomerization of BAK and apoptosis. Thus, VDAC2, an isoform restricted to mammals, regulates the activity of BAK and provides a connection between mitochondrial physiology and the core apoptotic pathway.