Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Environ Sci Technol ; 56(12): 8864-8874, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35622994

RESUMO

Oxidative modification is a facile method to improve the desalination performance of thin-film composite membranes. In this study, we comparatively investigated the modification mechanisms induced by sulfate radical (SO4• -) and hydroxyl radical (HO•) for polyamide reverse osmosis (RO) membrane. The SO4• -- and HO•-based membrane modifications were manipulated by simply adjusting the pH of the thermal-activated persulfate solution. Although both of them improved the water permeability of the RO membrane under certain conditions, the SO4• --modified membrane notably prevailed over the HO•-modified one due to higher permeability, more consistent salt rejection rates over wide pH and salinity ranges, and better stability when exposed to high doses of chlorine. The differences of the membranes modified by the two radical species probably can be related to their distinct surface properties in terms of morphology, hydrophilicity, surface charge, and chemical composition. Further identification of the transformation products of a model polyamide monomer using high-resolution mass spectrometry demonstrated that SO4• - initiated polymerization reactions and produced hydroquinone/benzoquinone and polyaromatic structures; whereas the amide group of the monomer was degraded by HO•, generating hydroxyl, carboxyl, and nitro groups. The results will enlighten effective ways for practical modification of polyamide RO membranes to improve desalination performances and the development of sustainable oxidation-combined membrane processes.


Assuntos
Radical Hidroxila , Nylons , Membranas Artificiais , Nylons/química , Osmose , Sulfatos
2.
Environ Sci Technol ; 50(9): 4668-74, 2016 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-27035544

RESUMO

In this work, ceramic ultrafiltration membranes deposited with different metal oxides (i.e., TiO2, Fe2O3, MnO2, CuO, and CeO2) of around 10 nm in thickness and similar roughness were tested for O/W emulsion treatment. A distinct membrane fouling tendency was observed, which closely correlated to the properties of the filtration-layer metal oxides (i.e., surface hydroxyl groups, hydrophilicity, surface charge, and adhesion energy for oil droplets). Consistent with the distinct bond strength of the surface hydroxyl groups, hydrophilicity of these common metal oxides is quite different. The differences in hydrophilicity consequently lead to different adhesion of these metal oxides toward oil droplets, consistent with the irreversible membrane fouling tendency. In addition, the surface charge of the metal oxide opposite to that of emulsion can help to alleviate irreversible membrane fouling in ultrafiltration. Highly hydrophilic Fe2O3 with the lowest fouling tendency could be a potential filtration-layer material for the fabrication/modification of ceramic membranes for O/W emulsion treatment. To the best of our knowledge, this is the first study clearly showing the correlations between surface properties of filtration-layer metal oxides and ceramic membrane fouling tendency by O/W emulsion.


Assuntos
Compostos Férricos , Ultrafiltração , Cerâmica/química , Membranas Artificiais , Metais , Óxidos , Propriedades de Superfície , Purificação da Água
3.
Environ Sci Technol ; 49(4): 2301-9, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25590510

RESUMO

This study contributed to improving our understanding of how disinfectants, applied to control biofouling of reverse osmosis (RO) membranes, result in membrane performance degradation. We investigated changes in physicochemical properties and permeation performance of a RO membrane with fully aromatic polyamide (PA) active layer. Membrane samples were exposed to varying concentrations of monochloramine, bromide, and iodide in both synthetic and natural seawater. Elemental analysis of the membrane active layer by Rutherford backscattering spectrometry (RBS) revealed the incorporation of bromine and iodine into the polyamide. The kinetics of polyamide bromination were first order with respect to the concentration of the secondary oxidizing agent Br2 for the conditions investigated. Halogenated membranes were characterized after treatment with a reducing agent and heavy ion probes to reveal the occurrence of irreversible ring halogenation and an increase in carboxylic groups, the latter produced as a result of amide bond cleavage. Finally, permeation experiments revealed increases in both water permeability and salt passage as a result of oxidative damage.


Assuntos
Membranas Artificiais , Osmose , Água do Mar/química , Purificação da Água/métodos , Incrustação Biológica , Brometos/química , Cloraminas , Filtração/métodos , Iodetos/química , Nylons/química , Permeabilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral , Purificação da Água/instrumentação
4.
Environ Sci Technol ; 47(19): 10884-94, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24032659

RESUMO

Reverse osmosis (RO) membrane fouling is not a static state but a dynamic phenomenon. The investigation of fouling kinetics and dynamics of change in the composition of the foulant mass is essential to elucidate the mechanism of fouling and foulant-foulant interactions. The aim of this work was to study at a lab scale the fouling process with an emphasis on the changes in the relative composition of foulant material as a function of operating time. Fouled membrane samples were collected at 8 h, and 1, 2, and 4 weeks on a lab-scale RO unit operated in recirculation mode. Foulant characterization was performed by CLSM, AFM, ATR-FTIR, pyrolysis GC-MS, and ICP-MS techniques. Moreover, measurement of active biomass and analysis of microbial diversity were performed by ATP analysis and DNA extraction, followed by pyro-sequencing, respectively. A progressive increase in the abundance of almost all the foulant species was observed, but their relative proportion changed over the age of the fouling layer. Microbial population in all the membrane samples was dominated by specific groups/species belonging to Proteobacteria and Actinobacteria phyla; however, similar to abiotic foulant, their relative abundance also changed with the biofilm age.


Assuntos
Bactérias/isolamento & purificação , Membranas Artificiais , Purificação da Água/instrumentação , Bactérias/classificação , Bactérias/genética , Biofilmes , DNA Bacteriano/genética , Cinética , Osmose , Filogenia , RNA Ribossômico 16S/genética , Água do Mar , Microbiologia da Água
5.
Water Res ; 241: 120159, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37290190

RESUMO

Aromatic polyamide (PA) based membranes are widely used for reverse osmosis (RO), but they can be degraded by free chlorine used for controlling the biofouling prior to RO treatment. Kinetics and mechanisms for the reactions of PA membrane model monomers, i.e., benzanilide (BA), and acetanilide (AC), with chlorine dioxide (ClO2) were investigated in this study. Rate constants for the reactions of ClO2 with BA and AC at pH 8.3 and 21°C were determined to be (4.1±0.1) × 10-1 M-1.24 s-1 and (6.0±0.1) × 10-3 M-1 s-1, respectively. These reactions are base assisted with a strong pH dependence. The activation energies of BA and AC degradation by ClO2 were 123.7 and 81.0 kJ mol-1, respectively. This indicates a relatively strong temperature dependence in the studied temperature range of 21-35 °C. The presence of bromide and natural organic matter does not promote the degradation of model monomers by ClO2. BA was degraded by ClO2 via two pathways: (1) the attack on the anilide moiety with the formation of benzamide (major pathway) and (2) oxidative hydrolysis to benzoic acid (minor pathway). A kinetic model was developed to simulate the degradation of BA and formation of byproducts during ClO2 pretreatment, and simulations agree well with the experimental data. Half-lives of BA treated by ClO2 were 1-5 orders of magnitude longer than chlorine under typical seawater treatment conditions. These novel findings suggest the potential application of ClO2 for controlling biofouling ahead of RO treatment at desalination treatments.


Assuntos
Compostos Clorados , Purificação da Água , Nylons , Cloro , Cinética , Óxidos , Cloretos
6.
Sci Total Environ ; 784: 147157, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34088054

RESUMO

The present work compares the chemical properties of isolated biopolymers of different origins and their fouling potential during ultrafiltration (UF). The biopolymers were extracted from secondary wastewater effluent as effluent organic matter (EfOM) and from surface water as natural organic matter (NOM). Multiple analytical techniques were used to characterize the isolates. The characterization results revealed that EfOM biopolymers were more enriched in protein-type structures compared to the NOM organics, and they presented significant differences in the reversibility of membrane fouling. Dissolved in pure water, EfOM biopolymers led to more irreversible fouling than that caused by NOM isolates. Dosing divalent cations (e.g., Ca2+) into the solutions increased the irreversibility of both types of fouling, while aggravating NOM fouling more significantly. Further investigation was conducted to understand the interaction between EfOM and NOM biopolymers during formation of the fouling layer. The results showed that the interaction between these two types of organics was negligible in the absence of salts. These findings highlight the importance of a comprehensive understanding of biopolymers from different origins, considering their chemical properties and water chemistry, which have valuable implications for selecting suitable membrane fouling control strategies for treating water from different origins.


Assuntos
Ultrafiltração , Purificação da Água , Biopolímeros , Membranas Artificiais , Águas Residuárias
7.
Water Res ; 41(17): 3803-11, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17632211

RESUMO

The treatment of a high DOC content surface water (about 6mg DOC/L) using anion exchange resins (MIEX resin from Orica or IRA958 resin from Rohm and Haas) can remove up to 80% of DOC in less than 45min. The combination of coagulation prior to or after resin treatment only slightly improves the removal of DOC (0.2-0.3mg/L) but eliminates the high MW organic compounds (MW >20kDa) attributed to biopolymers (proteins and polysaccharides) that were not removed using anion exchange resins alone and that were found to be responsible for reversible fouling of UF membranes (YM 100 UF membrane from Millipore with MW cut-off of 100kDa). The combination of treatments then significantly improves the permeability of the UF membrane. Also, the combination of both treatments allows a reduction of the coagulant doses by a factor of 6 with no impact on the DOC removal and the filterability of produced waters.


Assuntos
Carbono/química , Ultrafiltração/métodos , Purificação da Água/métodos , Água/química , Resinas de Troca Aniônica , Cromatografia em Gel , Troca Iônica , Cinética , Membranas Artificiais , Oxirredução , Solubilidade , Espectrofotometria Ultravioleta
8.
Water Res ; 116: 194-202, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28340417

RESUMO

In the current study, the interfacial interactions between the high molecular weight (HMW) compounds of Skeletonema costatum (SKC) extracellular organic matter (EOM) and ZrO2 or Al2O3, were investigated by atomic force microscopy (AFM). HMW SKC-EOM was rigorously characterized and described as a hydrophilic organic compound mainly comprised of polysaccharide-like structures. Lipids and proteins were also observed, although in lower abundance. HMW SKC-EOM displayed attractive forces during approaching (i.e., leading to jump-to-contact events) and adhesion forces during retracting regime to both metal oxides at all solution conditions tested, where electrostatics and hydrogen bonding were suggested as dominant interacting mechanisms. However, the magnitude of these forces was significantly higher on ZrO2 surfaces, irrespective of cation type (Na+ or Ca2+) or concentration. Interestingly, while HMW SKC-EOM interacting forces to Al2O3 were practically insensitive to solution chemistry, the interactions between ZrO2 and HMW SKC-EOM increased with increasing cation concentration in solution. The structure, and lower charge, hydrophilicity, and density of hydroxyl groups on ZrO2 surface would play a key role on favoring zirconia associations with HMW SKC-EOM. The current results contribute to advance our fundamental understanding of Algogenic Organic Matter (AOM) interfacial interactions with metal oxides (i.e., AOM membrane fouling), and would highly assist in the proper selection of membrane material during episodic algal blooms.


Assuntos
Filtração , Membranas Artificiais , Cerâmica , Metais , Óxidos
9.
Water Res ; 40(12): 2357-68, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16777172

RESUMO

Natural organic matter (NOM) isolates/fractions; organic colloids, and hydrophobic (HPO), transphilic (TPI), and hydrophilic (HPI) fractions; isolated from a natural surface water as an allochthonous source, and in the form of algal organic matter (AOM) derived from blue green algae as an autochthonous source, were investigated in low-pressure membrane filtration. The most significant flux decline was caused by organic colloids, with an intermediate flux decline caused by AOM derived (isolated) from ground and sonicated blue green algae. 3D fluorescence excitation-emission matrix (EEM) analyses revealed that colloids and AOM contain protein-like substances, and FTIR analyses showed overlapping peaks associated with the peptide bonds in proteins and alcohols in polysaccharides originating from extra- and/or intra-cellular materials. HP-SEC results also support a high content of apparently macromolecular compounds in the colloid fraction. The presence of a divalent cation (Ca(2+)), hypothesized to enhance fouling by NOM acids by a reduction in molecular charge, showed little effect. Morphological analyses indicated that the surface topography of fouled UF membranes was elevated, presumably due to deposition of NOM on the membrane surface. The pores of MF membranes were reduced, suggesting pore blockage and/or constriction by NOM aggregates.


Assuntos
Membranas Artificiais , Compostos Orgânicos/química , Pressão , Ultrafiltração/métodos , Purificação da Água/métodos , Coloides , Monitoramento Ambiental , Eutrofização , Floculação , Poluentes da Água/análise
10.
Water Res ; 93: 10-19, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26874470

RESUMO

Reducing membrane fouling caused by seawater algal bloom is a challenge for regions of the world where most of their freshwater is produced by seawater desalination. This study aims to compare ultrafiltration (UF) fouling potential of three ubiquitous marine algal species cultures (i.e., Skeletonema costatum-SKC, Tetraselmis sp.-TET, and Hymenomonas sp.-HYM) sampled at different phases of growth. Results showed that flux reduction and irreversible fouling were more severe during the decline phase as compared to the exponential phase, for all species. SKC and TET were responsible for substantial irreversible fouling but their impact was significantly lower than HYM. The development of a transparent gel layer surrounding the cell during the HYM growth and accumulating in water is certainly responsible for the more severe observed fouling. Chemical backwash with a standard chlorine solution did not recover any membrane permeability. For TET and HYM, the Hydraulically Irreversible Fouling Index (HIFI) was correlated to their biopolymer content but this correlation is specific for each species. Solution pre-filtration through a 1.2 µm membrane proved that cells and particulate algal organic matter (p-AOM) considerably contribute to fouling, especially for HYM for which the HIFI was reduced by a factor of 82.3.


Assuntos
Incrustação Biológica , Clorófitas/metabolismo , Diatomáceas/metabolismo , Haptófitas/metabolismo , Ultrafiltração/métodos , Biopolímeros/metabolismo , Clorófitas/crescimento & desenvolvimento , Diatomáceas/crescimento & desenvolvimento , Haptófitas/crescimento & desenvolvimento , Membranas Artificiais , Compostos Orgânicos/metabolismo , Água do Mar/microbiologia , Especificidade da Espécie , Ultrafiltração/instrumentação , Purificação da Água/instrumentação , Purificação da Água/métodos
11.
Water Res ; 39(9): 1699-708, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15899268

RESUMO

The objective of this study was first to compare the performance of four strong anion exchange resins (AERs) (MIEX from Orica Pty Ltd, DOWEX-11 and DOWEX-MSA from DOW chemical and IRA-938 from Rohm and Haas) for their application in drinking water treatment (natural organic matter (NOM), mineral anions (nitrate, sulfate and bromide) and pesticide removal) using bench-scale experimental procedures on a high DOC content surface water. The efficiency of MIEX for NOM and mineral anions removal was furthermore evaluated using bench-scale dose-response experiments on raw, clarified and post-ozonated waters. NOM removal was assessed using the measurement of dissolved organic carbon (DOC), UV absorbance at 254 nm (UV254) and the use of high-performance size exclusion chromatography with UV (HPSEC/UV) and fluorescence detection (HPSEC/FLUO). The MIEX and IRA938 anionic resins exhibit a faster removal of NOM and mineral anions compared to the DOWEX11 and MSA AERs. All the resins were found to be very effective with similar performances after 30 to 45 min of contact time. As expected, only limited sorption of atrazine and isoproturon (C0=1 microg/L) occurred with MIEX, DOWEX11 and MSA AERs. MIEX resin proved to be very efficient in eliminating NOM of high-molecular weight but also a large part of the smallest UV absorbing organic compounds which were refractory to coagulation/flocculation treatment. Remaining DOC levels after 30 min of contact with MIEX were found similar in raw water, clarified water and even post-ozonated water implying no DOC benefit can be gained by employing conventional treatment prior to MIEX treatment. Removal of bromide (initial concentration 110 microg/L) was also observed and ranged from 30% to 65% for resin dose increasing from 2 to 8 mL/L. T


Assuntos
Resinas de Troca Aniônica , Carbono/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Adsorção , Atrazina/isolamento & purificação , Brometos/isolamento & purificação , Carbamatos , Cloretos/isolamento & purificação , Herbicidas/isolamento & purificação , Substâncias Húmicas , Imidazóis , Nitratos/isolamento & purificação , Compostos de Fenilureia/isolamento & purificação , Resinas Sintéticas , Sulfatos/isolamento & purificação , Fatores de Tempo , Abastecimento de Água
12.
Water Res ; 78: 84-97, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25917390

RESUMO

Biofouling is the major problem of reverse osmosis (RO) membranes used for desalting seawater (SW). The use of chlorine is a conventional and common practice to control/prevent biofouling. Unlike polyamide RO membranes, cellulose triacetate (CTA) RO membranes display a high chlorine tolerance. Due to this characteristic, CTA membranes are used in most of the RO plants located in the Middle East region where the elevated seawater temperature and water quality promote the risk of membrane biofouling. However, there is no detailed study on the investigation/characterization of CTA-RO membrane fouling. In this investigation, the fouling profile of a full-scale SWRO desalination plant operating with not only continuous chlorination of raw seawater but also intermittent chlorination of CTA-RO membranes was studied. Detailed water quality and membrane fouling analyses were conducted. Profiles of microbiological, inorganic, and organic constituents of analysed fouling layers were extensively discussed. Our results clearly identified biofilm development on these membranes. The incapability of chlorination on preventing biofilm formation on SWRO membranes could be assigned to its failure in effectively reaching throughout the different regions of the permeators. This failure could have occurred due to three main factors: plugging of membrane fibers, chlorine consumption by organics accumulated on the front side fibers, or chlorine adaptation of certain bacterial populations.


Assuntos
Incrustação Biológica/prevenção & controle , Cloro/química , Membranas Artificiais , Purificação da Água/métodos , Biofilmes/crescimento & desenvolvimento , Osmose , Água do Mar/química , Água do Mar/microbiologia , Purificação da Água/instrumentação , Qualidade da Água
13.
Water Res ; 38(20): 4511-23, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15556226

RESUMO

An understanding of natural organic matter (NOM) as a membrane foulant and the behavior of NOM components in low-pressure membrane fouling are needed to provide a basis for appropriate selection and operation of membrane technology for drinking water treatment. Fouling by NOM was investigated by employing several innovative chemical and morphological analyses. Source (feed) waters with a high hydrophilic (HPI) fraction content of NOM resulted in significant flux decline. Macromolecules of a relatively hydrophilic character (e.g. polysaccharides) were effectively rejected by low-pressure membranes, suggesting that macromolecular compounds and/or colloidal organic matter in the hydrophilic NOM fraction may be a problematic foulant of low-pressure membranes. Moreover, the significant organic fouling that is contributed by polysaccharides and/or proteins in macromolecular and/or colloidal forms depends on molecular shape (structure) as well as size (i.e. molecular weight). More significant flux decline was observed in microfiltration (MF) compared to ultrafiltration (UF) membrane filtration. MF membrane fouling may be caused by pore blockage associated with large (macromolecular) hydrophilic molecules and/or organic colloids. In the case of UF membranes, the flux decline may be caused by sequential or simultaneous processes of surface (gel layer) coverage during filtration. Morphological analyses support the notion that membrane roughness may be considered as a more important factor in membrane fouling by controlling interaction between molecules and the membrane surface, compared to the hydrophobic/hydrophilic character of membranes. Membrane fouling mechanisms are not only a function of membrane type (MF versus UF) but also depend on source (feed) water characteristics.


Assuntos
Membranas Artificiais , Purificação da Água/métodos , Coloides , Falha de Equipamento , Filtração , Floculação , Compostos Orgânicos , Poluentes da Água/análise
14.
Water Res ; 65: 414-24, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25173435

RESUMO

EfOM has been regarded as a major organic foulant resulting in UF membrane fouling in wastewater reclamation. To investigate fouling potential of different EfOM fractions, the present study isolated EfOM into hydrophobic neutrals (HPO-N), colloids, hydrophobic acids (HPO-A), transphilic neutrals and acids (TPI), and hydrophilics (HPI), and tested their fouling effect in both salt solution and pure water during ultrafiltration (UF). Major functional groups and chemical structure of the isolates were identified using Fourier transform infrared spectroscopy (FT-IR) and solid-state carbon nuclear magnetic resonance ((13)C NMR) analysis. The influence of the isolation process on the properties of EfOM fractions was minor because the raw and reconstituted secondary effluents were found similar with respect to UV absorbance, molecular size distribution, and fluorescence character. In membrane filtration tests, unified membrane fouling index (UMFI) and hydraulic resistance were used to quantify irreversible fouling potential of different water samples. Results show that under similar DOC level in feed water, colloids present much more irreversible fouling than other fractions. The fouling effect of the isolates is related to their size, chemical properties, and solution chemistry. Further investigations have identified that the interaction between colloids and other fractions also influences the performance of colloids in fouling phenomena.


Assuntos
Compostos Orgânicos/química , Ultrafiltração/instrumentação , Eliminação de Resíduos Líquidos/instrumentação , Interações Hidrofóbicas e Hidrofílicas , Espectroscopia de Ressonância Magnética , Membranas Artificiais , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/instrumentação , Purificação da Água/métodos
15.
Water Res ; 59: 271-82, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24810743

RESUMO

To study the effect of water quality and operating parameters on membrane fouling, a comparative analysis of wastewater (WW) and seawater (SW) fouled reverse osmosis (RO) membranes was conducted. Membranes were harvested from SWRO and WWRO pilot plants located in Vilaseca (East Spain), both using ultrafiltration as pretreatment. The SWRO unit was fed with Mediterranean seawater and the WWRO unit was operated using secondary effluent collected from the municipal wastewater treatment plant. Lead and terminal SWRO and WWRO modules were autopsied after five months and three months of operation, respectively. Ultrastructural, chemical, and microbiological analyses of the fouling layers were performed. Results showed that the WWRO train had mainly bio/organic fouling at the lead position element and inorganic fouling at terminal position element, whereas SWRO train had bio/organic fouling at both end position elements. In the case of WWRO membranes, Betaproteobacteria was the major colonizing species; while Ca, S, and P were the major present inorganic elements. The microbial population of SWRO membranes was mainly represented by Alpha and Gammaproteobacteria. Ca, Fe, and S were the main identified inorganic elements of the fouling layer of SWRO membranes. These results confirmed that the RO fouling layer composition is strongly impacted by the source water quality.


Assuntos
Membranas Artificiais , Osmose , Reciclagem , Água do Mar/química , Cloreto de Sódio/química , Águas Residuárias , Incrustação Biológica , Projetos Piloto , Espectroscopia de Infravermelho com Transformada de Fourier , Eliminação de Resíduos Líquidos
16.
Water Res ; 47(2): 558-68, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23164217

RESUMO

The complexity of Reverse Osmosis (RO) membrane fouling phenomenon has been widely studied and several factors influencing it have been reported by many researchers. This original study involves the investigation of two different fouling profiles produced at a seawater RO desalination plant installed on a floating mobile barge. The plant was moved along the coastline of the Red Sea in Saudi Arabia. The two locations where the barge was anchored showed different water quality. At the second location, two modules were harvested. One of the modules was pre-fouled by inorganics during plant operation at the previous site while the other was installed at the second site. Fouled membranes were subjected to a wide range of chemical and microbiological characterization procedures. Drastically different fouling patterns were observed in the two membranes which indicates the influence of source water quality on membrane surface modification and on fouling of RO membranes.


Assuntos
Incrustação Biológica , Membranas Artificiais , Água do Mar/química , Purificação da Água/instrumentação , Qualidade da Água , Recursos Hídricos/análise , Abastecimento de Água/análise , Biofilmes/crescimento & desenvolvimento , Incrustação Biológica/prevenção & controle , Cromatografia Gasosa-Espectrometria de Massas , Bactérias Gram-Negativas/classificação , Bactérias Gram-Negativas/crescimento & desenvolvimento , Bactérias Gram-Negativas/isolamento & purificação , Bactérias Gram-Negativas/fisiologia , Bactérias Gram-Positivas/classificação , Bactérias Gram-Positivas/crescimento & desenvolvimento , Bactérias Gram-Positivas/isolamento & purificação , Bactérias Gram-Positivas/fisiologia , Oceano Índico , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica de Transmissão e Varredura , Tipagem Molecular , Osmose , Arábia Saudita , Água do Mar/microbiologia , Espectrometria por Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície
17.
Water Res ; 47(11): 3827-34, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23648287

RESUMO

The performance of ion exchange (IX) resin for organics removal from wastewater was assessed using advanced characterisation techniques for varying doses of IX. Organic characterisation using liquid chromatography with a photodiode array (PDA) and fluorescence spectroscopy (Method A), and UV254, organic carbon and organic nitrogen detectors (Method B), was undertaken on wastewater before and after magnetic IX treatment. Results showed partial removal of the biopolymer fraction at high IX doses. With increasing concentration of IX, evidence for nitrogen-containing compounds such as proteins and amino acids disappeared from the LC-OND chromatogram, complementary to the fluorescence response. A greater fluorescence response of tryptophan-like proteins (278 nm/343 nm) for low IX concentrations was consistent with aggregation of tryptophan-like compounds into larger aggregates, either by self-aggregation or with polysaccharides. Recycling of IX resin through multiple adsorption steps without regeneration maintained the high level of humics removal but there was no continued removal of biopolymer. Subsequent membrane filtration of the IX treated waters resulted in complex fouling trends. Filtration tests with either polypropylene (PP) or polyvinylidene fluoride (PVDF) membranes showed higher rates of initial fouling following treatment with high IX doses (10 mL/L) compared to filtration of untreated water, while treatment with lower IX doses resulted in decreased fouling rates relative to the untreated water. However, at longer filtration times the rate of fouling of IX treated waters was lower than untreated water and the relative fouling rates corresponded to the amount of biopolymer material in the feed. It was proposed that the mode of fouling changed from pore constriction during the initial filtration period to filter cake build up at longer filtration times. The organic composition strongly influenced the rate of fouling during the initial filtration period due to competitive adsorption processes, while at longer filtration times the rate of fouling appeared to depend upon the amount of biopolymer material in the feed water.


Assuntos
Filtração/instrumentação , Resinas de Troca Iônica/química , Membranas Artificiais , Polipropilenos , Purificação da Água/instrumentação , Purificação da Água/métodos , Adsorção , Cromatografia Líquida/métodos , Interações Hidrofóbicas e Hidrofílicas , Compostos Orgânicos/isolamento & purificação , Polivinil , Espectrometria de Fluorescência , Águas Residuárias , Qualidade da Água
18.
Water Res ; 46(17): 5531-5540, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22884373

RESUMO

Anion exchange resin (AER), powder activated carbon (PAC) adsorption and ozonation treatments were applied on biologically treated wastewater effluent with the objective to modify the effluent organic matter (EfOM) matrix. Both AER and PAC led to significant total organic carbon (TOC) removal, while the TOC remained nearly constant after ozonation. Liquid Chromatography-Organic Carbon Detection (LC-OCD) analysis showed that the AER treatment preferentially removed high and intermediate molecular weight (MW) humic-like structures while PAC removed low MW compounds. Only a small reduction of the high MW colloids (i.e. biopolymers) was observed for AER and PAC treatments. Ozonation induced a large reduction of the biopolymers and an important increase of the low MW humic substances (i.e. building blocks). Single-cycle microfiltration (MF) and ultrafiltration (UF) tests were conducted using commercially available hollow fibres at a constant flux. After reconcentration to their original organic carbon content, the EfOM matrix modified by AER and PAC treatments exhibited higher UF membrane fouling compared to untreated effluent; result that correlated with the higher concentration of biopolymers. On the contrary, ozonation which induced a significant degradation of the biopolymers led to a minor flux reduction for both UF and MF filtration tests. Based on a single filtration, results indicate that biopolymers play a major role in low pressure membrane fouling and that intermediate and low MW compounds have minor impact. Thus, this approach has shown to be a valid methodology to identify the foulant fractions of EfOM.


Assuntos
Membranas Artificiais , Eliminação de Resíduos Líquidos/métodos , Adsorção , Resinas de Troca Aniônica/química , Carvão Vegetal/química , Filtração/métodos , Ultrafiltração/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA