Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 103(17): 7003-7015, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31289903

RESUMO

Use of recombinant glycosidases is a promising approach for the production of minor ginsenosides, e.g., Compound K (CK) and F1, which have potential applications in the food industry. However, application of these recombinant enzymes for food-grade preparation of minor ginsenosides are limited by the lack of suitable expression hosts and low productivity. In this study, Corynebacterium glutamicum ATCC13032, a GRAS strain that has been used extensively for the industrial-grade production of additives for foodstuffs, was employed to express a novel ß-glucosidase (MT619) from Microbacterium testaceum ATCC 15829 with high ginsenoside-transforming activity. A cellulose-binding module was additionally fused to the N-terminus of MT619 for immobilization on cellulose, which is an abundant and safe material. Via one-step immobilization, the fusion protein in cell lysates was efficiently immobilized on regenerated amorphous cellulose at a high density (maximum 984 mg/g cellulose), increasing the enzyme concentration by 286-fold. The concentrated and immobilized enzyme showed strong conversion activities against protopanaxadiol- and protopanaxatriol-type ginsenosides for the production of CK and F1. Using gram-scale ginseng extracts as substrates, the immobilized enzyme produced 7.59 g/L CK and 9.42 g/L F1 in 24 h. To the best of our knowledge, these are the highest reported product concentrations of CK and F1, and this is the first time that a recombinant enzyme has been immobilized on cellulose for the preparation of minor ginsenosides. This safe, convenient, and efficient production method could also be effectively exploited in the preparation of food-processing recombinant enzymes in the pharmaceutical, functional food, and cosmetics industries.


Assuntos
Enzimas Imobilizadas/metabolismo , Ginsenosídeos/metabolismo , beta-Glucosidase/metabolismo , Actinomycetales/enzimologia , Actinomycetales/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biotransformação , Celulose/química , Clonagem Molecular , Corynebacterium glutamicum/enzimologia , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Enzimas Imobilizadas/química , Enzimas Imobilizadas/genética , Expressão Gênica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Sapogeninas/metabolismo , beta-Glucosidase/química , beta-Glucosidase/genética
2.
Biomater Sci ; 9(23): 7862-7875, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34676840

RESUMO

The treatment efficiency of the Fenton reaction is expected to be greatly restricted due to problems such as inefficient delivery of Fenton catalysis, limited H2O2 concentration and uneven tumour tissue. Accurate photothermal therapy (PTT) could improve the efficiency of Fenton catalysis to some extent by raising the temperature. However, the heat shock response (HSR) of tumour cells caused by PTT and Fenton reaction would attenuate the treatment effect. In this study, we developed an iron ions-mediated Fenton reaction combined with a PTT treatment platform based on a metal-organic framework, i.e., PPy-CTD@MIL-100@MPCM nanoparticles (PCMM NPs), and further explored the inhibitory effect of PCMM NPs on the heat shock response (HSR). PCMM NPs could accumulate in tumour tissue via the coated macrophage cell membranes (MPCMs) to target inflammatory tissues. The photothermal effect of polypyrrole (PPy) accelerated the release of cantharidin (CTD) and iron ions loaded in the PCMM NPs. CTD, as an HSR inhibitor, could inhibit this response of tumour cells and improve the effect of PTT. Meanwhile, the heat generated during the PTT process could improve the efficiency of the Fenton reaction. This study suggested that PCMM NPs could serve as a combined treatment platform to enhance the Fenton reaction based on amplified photothermal therapy.


Assuntos
Cantaridina , Nanopartículas , Biomimética , Peróxido de Hidrogênio , Fototerapia , Terapia Fototérmica , Polímeros , Pirróis
3.
Biomed Pharmacother ; 142: 112061, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34449313

RESUMO

CRISPR/Cas9 system has been used as the most powerful gene editing tool for precision medicine and advanced gene therapy. However, its wide applications are limited by the poor biosafety of lentivirus delivery vectors though with high-efficiency transduction. To construct a safer vector and promote genome integration, the CRISPR/Cas9 gene is cloned into a plasmid-based non-viral safe vector Sleeping-Beauty (SB) transposon in this study to obtain pT2SpCas9. Meanwhile, PDA/DEX-PEI@HA (PDPH) nanoparticles are constructed to facilitate the precise CRISPR/Cas9 targeting delivery, by using polydopamine (PDA) as the carrier, hyaluronic acid (HA) as the cell-targeting ligand and dexamethasone (DEX) as the nuclear localization signal (NLS). The results showed that PDPH could deliver pDNA efficiently into the cell and further into the nucleus. The transfection efficiency of PDPH is much higher than that of NPs without HA and DEX. Remarkably, the cytotoxicity of PDPH is negligible in comparison to PEI25k and PEI10k. Western blots showed that after the transfection of PDPH/pT2SpCas9-Nanog/SB11, Nanog protein in HeLa cells is knocked out, and the proliferation and migration abilities of tumor cells are significantly decreased. This study demonstrates that PDA/DEX-PEI25k@HA/pT2SpCas9 (PDPH25 K/pT2SpCas9) has the great potential as a non-viral gene vector for CRISPR/Cas9 delivery and clinical medication.


Assuntos
Proteína 9 Associada à CRISPR/genética , Técnicas de Transferência de Genes , Nanopartículas , Transposases/genética , Dexametasona/metabolismo , Edição de Genes/métodos , Técnicas de Inativação de Genes , Terapia Genética/métodos , Vetores Genéticos/genética , Células HeLa , Humanos , Ácido Hialurônico/metabolismo , Indóis/química , Ligantes , Proteína Homeobox Nanog/genética , Plasmídeos/genética , Polietilenoimina/química , Polímeros/química , Transfecção
4.
J Drug Target ; 29(8): 884-891, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33571019

RESUMO

Nano graphene oxide (NGO) has high drug-loading capacity due to its huge surface area. However, the limited stability and the poor biocompatibility of NGO hampered its application as drug delivery carrier under physiological conditions. Thereby, a new strategy of using chemical conjugation on NGO with hydrophilic polymers was adopted but currently was too complicated, low yield and costly. In this study, doxorubicin-hyd-PEG-folic acid (DOX-hyd-PEG-FA) polymers were coated on the surface of NGO via π-π stocking and the hydrophobic effect between DOX and NGO. With the PEG shell protection, the biocompatibility of NGO was significantly improved. The drug-loading capacity of nanoparticles was more than 100%. FA ligands on the nanoparticle could guide the nanoparticles actively targeting to tumour cells. The hydrazone bond between DOX and PEG was decomposed spontaneously in the weakly acidic environment, which made PEG layer dissociated from NGO. Furthermore, DOX was easily protonized at low pH conditions, which weakened the interaction between DOX and NGO. Thus, DOX could be released rapidly from the nanoparticles in tumour cells. In summary, NGO@DOX-hyd-PEG-FA is an easy-prepared nanoparticle with excellent biocompatibility, high pH-sensitivity and active tumour targeting. Therefore, it is a promising multifunctional nanocarrier effective for targeted drug delivery.


Assuntos
Doxorrubicina/química , Portadores de Fármacos/química , Grafite/química , Nanopartículas/química , Polietilenoglicóis/química , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Ácido Fólico/química , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Polímeros/química
5.
Int J Pharm ; 557: 66-73, 2019 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-30580088

RESUMO

Graphene oxide (GO) owns huge surface area and high drug loading capacity for aromatic molecules, such as doxorubicin (DOX). However, its biocompatibility is poor and it might agglomerate in physiological conditions. Chemical modification of GO with hydrophilicpolymer, especially PEGylation, was a common method to improve its biocompatibility. But the chemical modification of GO was complicated, and its drug loading capacity might be reduced because of the occupation of its functional groups. In this study, DOX-PEG polymers with different PEG molecular weights were synthesized to modify nano graphene oxide (NGO) to simultaneously realize the solubilization of NGO and the high loading capacity of DOX. The result showed that the drug release of NGO@DOX-PEG was pH sensitive. NIR irradiation could augment the drug release, cellular uptake, cytotoxicity and nuclear translocation of nanodrugs. Among the three kinds of nanodrugs, NGO@DOX-PEG5K was superior to others. It suggested that after conjugating with PEG, the bond between DOX-PEG and NGO was weakened, which resulted in a better drug release and treatment effect. In summary, the NIR and pH dual-responsive NGO@DOX-PEG nanodrugs were developed by noncovalent modification, and it demonstrated excellent biocompatibility and photochemical therapeutic effect, presenting a promising candidate for antitumor therapy, especially NGO@DOX-PEG5K.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Portadores de Fármacos/administração & dosagem , Grafite/administração & dosagem , Nanopartículas/administração & dosagem , Óxidos/administração & dosagem , Polietilenoglicóis/administração & dosagem , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Doxorrubicina/química , Doxorrubicina/efeitos da radiação , Portadores de Fármacos/química , Portadores de Fármacos/efeitos da radiação , Liberação Controlada de Fármacos , Grafite/química , Grafite/efeitos da radiação , Células HeLa , Humanos , Luz , Nanopartículas/química , Nanopartículas/efeitos da radiação , Óxidos/química , Óxidos/efeitos da radiação , Fotoquimioterapia , Polietilenoglicóis/química , Polietilenoglicóis/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Solubilidade
6.
Drug Deliv ; 25(1): 112-121, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29260912

RESUMO

How to overcome drug resistance and prevent tumor metastasis is key to the success of malignant tumor therapy. In this paper, ADH-1 peptide-modified liposomes (A-LP) have been successfully constructed for restoring chemosensitivity and suppressing cancer cell migration. With a particle size of about 90 nm, this functionalized nanocarrier was loaded with fluorescent probe or paclitaxel (PTX). Cellular uptake studies showed that A-LP facilitated the delivery of anticancer drug to tumor cells undergoing EMT. Interestingly, this nanocarrier enhanced chemosensitivity by assessing the cell activity using CCK-8 assay. Further, the results of Wound scratch assay and Transwell migration assay showed the inhibition effect of this nanocarrier on tumor cell migration. Moreover, this nanocarrier exhibited significant tumor-targeting ability and anti-tumor efficacy in vivo. Collectively, A-LP might be a novel targeted drug delivery system to enhance the efficacy of chemotherapy and prevent tumor metastasis.


Assuntos
Antineoplásicos/administração & dosagem , Antineoplásicos/química , Movimento Celular/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Lipossomos/química , Oligopeptídeos/administração & dosagem , Oligopeptídeos/química , Peptídeos Cíclicos/administração & dosagem , Peptídeos Cíclicos/química , Animais , Linhagem Celular Tumoral , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Feminino , Humanos , Lipossomos/administração & dosagem , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/química , Paclitaxel/química , Tamanho da Partícula
7.
Biomaterials ; 121: 55-63, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28081459

RESUMO

A Sleeping Beauty (SB) transposon system is made of a transposon plasmid (containing gene encoding a desired functional or therapeutic protein) and a transposase plasmid (encoding an enzyme capable of cutting and pasting the gene into the host cell genome). It is a kind of natural, nonviral gene delivery vehicle, which can achieve efficient genomic insertion, providing long-term transgenic expression. However, before the SB transposon system could play a role in promoting gene expression, it has to be delivered efficiently first across cell membrane and then into cell nuclei. Towards this end, we used a nanoparticle-like lipid-based protocell, a closed bilayer of the neutral lipids with the DNA encapsulated inside, to deliver the SB transposon system to cancer cells. The SB transposon system was amplified in situ inside the protocells by a polymerase chain reaction (PCR) process, realizing more efficient loading and delivery of the target gene. To reach a high transfection efficiency, we introduced two targeting moieties, folic acid (FA) as a cancer cell-targeting motif and Dexamethasone (DEX) as a nuclear localization signaling molecule, into the protocells. As a result, the FA enabled the modified targeting protocells to deliver the DNA into the cancer cells with an increased efficiency and the DEX promoted the DNA to translocate to cell nuclei, eventually leading to the increased chromosome insertion efficiency of the SB transposon. In vivo study strongly suggested that the transfection efficiency of FA-modified protocells in the tumor tissue was much higher than that in other tissues, which was consistent with the in vitro results. Our studies implied that with the targeting ligand modification, the protocells could be utilized as an efficient targeting gene carrier. Since the protocells were made of neutral lipids without cationic charges, the cytotoxicity of protocells was significantly lower than that of traditional cationic gene carriers such as cationic liposomes and polyethylenimine, enabling the protocells to be employed in a wider dosage range in gene therapy. Our work shows that the protocells are a promising gene carrier for future clinical applications.


Assuntos
Células Artificiais/química , Terapia Genética/métodos , Nanocápsulas/química , Neoplasias Experimentais/genética , Neoplasias Experimentais/terapia , Plasmídeos/administração & dosagem , Transposases/genética , Animais , Linhagem Celular Tumoral , Elementos de DNA Transponíveis/genética , Feminino , Marcação de Genes/métodos , Células HeLa , Humanos , Lipídeos/química , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanocápsulas/administração & dosagem , Plasmídeos/genética , Reação em Cadeia da Polimerase/métodos , Transfecção/métodos , Transposases/administração & dosagem , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA