Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Chem Rev ; 120(19): 10662-10694, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32302091

RESUMO

This review provides a detailed overview of the rapidly advancing field of biofabrication, particularly with regards to the use of photo-cross-linking (i.e., light-based) techniques. The major emphasis of this review is on the fundamentals of photo-cross-linking and key criteria identified for the successful design and implementation of photo-cross-linked bioinks and bioresins in extrusion-based and lithography-based bioprinting. The general mechanisms associated with photo-cross-linking (e.g., free-radical chain polymerization, thiol-ene, photomediated redox) of natural and synthetic materials are described to inform bioink and bioresin design, which includes the selection of polymers, functional group modifications, photoinitiators, and light sources that enable facile and cytocompatible photo-cross-linking. Depending on material selection and the bioprinting technique of interest, we describe the specific bioink or bioresin properties and criteria that must be achieved to ensure optimal printability and utility. Finally, examples of current state-of-the-art applications of light-based bioprinting for in vitro tissue models, tissue engineering, and regenerative medicine are provided to further motivate future opportunities within the bioprinting landscape that are facilitated with light.


Assuntos
Materiais Biocompatíveis/química , Bioimpressão , Reagentes de Ligações Cruzadas/química , Impressão Tridimensional , Engenharia Tecidual , Humanos , Processos Fotoquímicos
2.
Adv Exp Med Biol ; 1078: 245-269, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30357627

RESUMO

Growth factors (GFs) are often a key component in tissue engineering and regenerative medicine approaches. In order to fully exploit the therapeutic potential of GFs, GF delivery vehicles have to meet a number of key design criteria such as providing localized delivery and mimicking the dynamic native GF expression levels and patterns. The use of biomaterials as delivery systems is the most successful strategy for controlled delivery and has been translated into different commercially available systems. However, the risk of side effects remains an issue, which is mainly attributed to insufficient control over the release profile. This book chapter reviews the current strategies, chemistries, materials and delivery vehicles employed to overcome the current limitations associated with GF therapies.


Assuntos
Sistemas de Liberação de Medicamentos , Peptídeos e Proteínas de Sinalização Intercelular/administração & dosagem , Medicina Regenerativa , Engenharia Tecidual , Materiais Biocompatíveis , Humanos
3.
Adv Healthc Mater ; 13(13): e2303511, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38353398

RESUMO

Type 2 diabetes is rapidly emerging as a global public health problem. While blood glucose monitoring has been the primary method of managing diabetes for decades, the increasing global prevalence of the disease suggests that there might be a need to identify additional biomarkers for a more precise early diagnosis. Herein, a microneedle patch based wearable sensor is developed for the purpose of diabetic diagnosis. Utilizing methacrylic acid modified gelatin and polyvinyl alcohol in the fabrication of microneedles has improved their mechanical properties for skin penetration and increased swelling capacity for interstitial fluid extraction, thanks to the double crosslinking mechanism. The fabricated microneedles are further integrated with test paper functionalized with enzyme and dye molecules to detect multiple signature biomarkers of diabetes in vivo through a colorimetric reaction. Such a wearable microneedle patch  holds significant promise for the real-time monitoring of various biomarkers related to chronic diseases and aging.


Assuntos
Biomarcadores , Colorimetria , Agulhas , Dispositivos Eletrônicos Vestíveis , Colorimetria/métodos , Colorimetria/instrumentação , Biomarcadores/análise , Humanos , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/metabolismo , Animais , Álcool de Polivinil/química , Gelatina/química , Camundongos
4.
Adv Mater ; 36(16): e2312559, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38266145

RESUMO

Abnormal silencing of fibroblast growth factor (FGF) signaling significantly contributes to joint dysplasia and osteoarthritis (OA); However, the clinical translation of FGF18-based protein drugs is hindered by their short half-life, low delivery efficiency and the need for repeated articular injections. This study proposes a CRISPR/Cas9-based approach to effectively activate the FGF18 gene of OA chondrocytes at the genome level in vivo, using chondrocyte-affinity peptide (CAP) incorporated hybrid exosomes (CAP/FGF18-hyEXO) loaded with an FGF18-targeted gene-editing tool. Furthermore, CAP/FGF18-hyEXO are encapsulated in methacrylic anhydride-modified hyaluronic (HAMA) hydrogel microspheres via microfluidics and photopolymerization to create an injectable microgel system (CAP/FGF18-hyEXO@HMs) with self-renewable hydration layers to provide persistent lubrication in response to frictional wear. Together, the injectable CAP/FGF18-hyEXO@HMs, combined with in vivo FGF18 gene editing and continuous lubrication, have demonstrated their capacity to synergistically promote cartilage regeneration, decrease inflammation, and prevent ECM degradation both in vitro and in vivo, holding great potential for clinical translation.


Assuntos
Cartilagem Articular , Exossomos , Microgéis , Osteoartrite , Humanos , Condrócitos , Lubrificação , Exossomos/metabolismo , Edição de Genes , Cartilagem Articular/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/uso terapêutico , Osteoartrite/metabolismo
5.
Acta Biomater ; 171: 68-84, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37730080

RESUMO

Exosomes, nanoscale extracellular vesicles, play a crucial role in intercellular communication, owing to their biologically active cargoes such as RNAs and proteins. In recent years, they have emerged as a promising tool in the field of tissue regeneration, with the potential to initiate a new trend in cell-free therapy. However, it's worth noting that not all types of exosomes derived from cells are appropriate for tissue repair. Thus, selecting suitable cell sources is critical to ensure their efficacy in specific tissue regeneration processes. Current therapeutic applications of exosomes also encounter several limitations, including low-specific content for targeted diseases, non-tissue-specific targeting, and short retention time due to rapid clearance in vivo. Consequently, this review paper focuses on exosomes from diverse cell sources with functions specific to tissue regeneration. It also highlights the latest engineering strategies developed to overcome the functional limitations of natural exosomes. These strategies encompass the loading of specific therapeutic contents into exosomes, the endowment of tissue-specific targeting capability on the exosome surface, and the incorporation of biomaterials to extend the in vivo retention time of exosomes in a controlled-release manner. Collectively, these innovative approaches aim to synergistically enhance the therapeutic effects of natural exosomes, optimizing exosome-based cell-free strategies to boost endogenous cell functions in tissue regeneration. STATEMENT OF SIGNIFICANCE: Exosome-based cell-free therapy has recently emerged as a promising tool for tissue regeneration. This review highlights the characteristics and functions of exosomes from different sources that can facilitate tissue repair and their contributions to the regeneration process. To address the functional limitations of natural exosomes in therapeutic applications, this review provides an in-depth understanding of the latest engineering strategies. These strategies include optimizing exosomal contents, endowing tissue-specific targeting capability on the exosome surface, and incorporating biomaterials to extend the in vivo retention time of exosomes in a controlled-release manner. This review aims to explore and discuss innovative approaches that can synergistically improve endogenous cell functions in advanced exosome-based cell-free therapies for a broad range of tissue regeneration.


Assuntos
Exossomos , Vesículas Extracelulares , Exossomos/metabolismo , Preparações de Ação Retardada , Comunicação Celular , Materiais Biocompatíveis/metabolismo
6.
Adv Healthc Mater ; 12(20): e2202827, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36977522

RESUMO

Cardiovascular disease remains the leading cause of mortality worldwide. The inability of cardiac tissue to regenerate after an infarction results in scar tissue formation, leading to cardiac dysfunction. Therefore, cardiac repair has always been a popular research topic. Recent advances in tissue engineering and regenerative medicine offer promising solutions combining stem cells and biomaterials to construct tissue substitutes that could have functions similar to healthy cardiac tissue. Among these biomaterials, plant-derived biomaterials show great promise in supporting cell growth due to their inherent biocompatibility, biodegradability, and mechanical stability. More importantly, plant-derived materials have reduced immunogenic properties compared to popular animal-derived materials (e.g., collagen and gelatin). In addition, they also offer improved wettability compared to synthetic materials. To date, limited literature is available to systemically summarize the progression of plant-derived biomaterials in cardiac tissue repair. Herein, this paper highlights the most common plant-derived biomaterials from both land and marine plants. The beneficial properties of these materials for tissue repair are further discussed. More importantly, the applications of plant-derived biomaterials in cardiac tissue engineering, including tissue-engineered scaffolds, bioink in 3D biofabrication, delivery vehicles, and bioactive molecules, are also summarized using the latest preclinical and clinical examples.


Assuntos
Materiais Biocompatíveis , Alicerces Teciduais , Animais , Materiais Biocompatíveis/farmacologia , Engenharia Tecidual/métodos , Medicina Regenerativa/métodos , Colágeno
7.
ACS Appl Mater Interfaces ; 13(48): 57043-57057, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34806361

RESUMO

Despite the formation of mechanically inferior fibrocartilage, microfracture (MF) still remains the gold standard to repair the articular cartilage defects in clinical settings. To date, although many tissue-engineering scaffolds have been developed to enhance the MF outcome, the clinical outcomes remain inconsistent. Decellularized extracellular matrix (dECM) is among the most promising scaffold for cartilage repair due to its inheritance of the natural cartilage components. However, the impact of dECM from different developmental stages on cellular chondrogenesis and therapeutic effect remains elusive, as the development of native cartilage involves the distinct temporal dependency of the ECM components and various growth factors. Herein, we hypothesized that the immature cartilage dECM at various developmental stages was inherently different, and would consequently impact the chondrogenic potential BMSCs. In this study, we fabricated three different unidirectional collagen-dECM scaffolds sourced from neonatal, childhood, and adolescent rabbit cartilage tissues, and identified the age-dependent biological variations, including DNA, cartilage-specific proteins, and growth factors; along with the mechanical and degradation differences. Consequently, the different local cellular microenvironments provided by these scaffolds led to the distinctive cell morphology, circularity, proliferation, chondrogenic genes expression, and chondrogenesis of BMSCs in vitro, and the different gross morphology, cartilage-specific protein production, and subchondral bone repair when in combination with microfracture in vivo. Together, this work highlights the immature cartilage dECM at different developmental stages that would result in the diversified effects to BMSCs, and childhood cartilage would be considered the optimal dECM source for the further development of dECM-based tissue engineering scaffolds in articular cartilage repair.


Assuntos
Materiais Biomiméticos/metabolismo , Cartilagem Articular/metabolismo , Condrogênese , Colágeno/metabolismo , Matriz Extracelular Descelularizada/metabolismo , Alicerces Teciduais/química , Animais , Materiais Biomiméticos/química , Cartilagem Articular/química , Colágeno/química , Matriz Extracelular Descelularizada/química , Teste de Materiais , Células-Tronco Mesenquimais/química , Células-Tronco Mesenquimais/metabolismo , Coelhos , Engenharia Tecidual
8.
ACS Appl Mater Interfaces ; 13(21): 24553-24564, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34014092

RESUMO

Articular cartilage has very poor intrinsic healing ability and its repair remains a significant clinical challenge. To promote neocartilage regeneration, we fabricated two collagen (Col) scaffolds functionalized with a porcine decellularized extracellular matrix (dECM) in the forms of particle and solution named pE-Col and sE-Col, respectively. Their differences were systematically compared, including the biochemical compositions, scaffold properties, cell-material interactions, and in situ cartilage regeneration. While it is demonstrated that both forms of dECM could enhance the cell recruitment, proliferation, and chondrogenesis of bone marrow stem cells (BMSCs) in vitro, better performance was seen in the sE-Col group, which could quickly provide a more favorable chondrogenic microenvironment for endogenous BMSCs. The superiority of sE-Col was also proved by our in vivo study, which showed that the sE-Col scaffold achieved better structural hyaline-like neocartilage formation and subchondral bone repair compared to the pE-Col scaffold, according to the gross morphology, biological assessment, and micro-CT imaging analysis. Together, this study suggests that the sE-Col scaffold holds great potential in developing the one-step microfracture-based strategy for cartilage repair and also reminds us that despite dECM being a promising biomaterial in tissue engineering, the optimization of the proper processing methodology would be a crucial consideration in the future design of dECM-based scaffolds in articular cartilage regeneration.


Assuntos
Células da Medula Óssea/citologia , Cartilagem Articular/metabolismo , Condrogênese , Matriz Extracelular/metabolismo , Células-Tronco Mesenquimais/citologia , Animais , Materiais Biocompatíveis , Cartilagem Articular/patologia , Diferenciação Celular , Coelhos , Solubilidade , Suínos , Engenharia Tecidual/métodos , Alicerces Teciduais , Cicatrização
9.
Acta Biomater ; 132: 188-216, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-33713862

RESUMO

The evolution of additive manufacturing (AM) technologies, biomaterial development and our increasing understanding of cell biology has created enormous potential for the development of personalized regenerative therapies. In the context of skeletal tissue engineering, physical and biological demands play key roles towards successful construct implantation and the achievement of bone, cartilage and blood vessel tissue formation. Nevertheless, meeting such physical and biological demands to mimic the complexity of human tissues and their functionality is still a significant ongoing challenge. Recent studies have demonstrated that combination of AM technologies and advanced biomaterials has great potential towards skeletal tissue engineering. This review aims to analyze how the most prominent technologies and discoveries in the field converge towards the development of advanced constructs for skeletal regeneration. Particular attention is placed on hybrid biofabrication strategies, combining bioinks for cell delivery with biomaterial inks providing physical support. Hybrid biofabrication has been the focus of recent emerging strategies, however there has been limited review and analysis of these techniques and the challenges involved. Furthermore, we have identified that there are multiple hybrid fabrication strategies, here we present a category system where each strategy is reviewed highlighting their distinct advantages, challenges and potential applications. In addition, bioinks and biomaterial inks are the main components of the hybrid biofabrication strategies, where it is recognized that such platforms still lack optimal physical and biological functionality. Thus, this review also explores the development of composite materials specifically targeting the enhancement of physical and biological functionality towards improved skeletal tissue engineering. STATEMENT OF SIGNIFICANCE: Biofabrication strategies capable of recreating the complexity of native tissues could open new clinical possibilities towards patient-specific regenerative therapies and disease models. Several reviews target the existing additive manufacturing (AM) technologies that may be utilised for biomedical purposes. However, this work presents a unique perspective, describing how such AM technologies have been recently translated towards hybrid fabrication strategies, targeting the fabrication of constructs with converging physical and biological properties. Furthermore, we address composite bioinks and biomaterial inks that have been engineered to overcome traditional limitations, and might be applied to the hybrid fabrication strategies outlined. This work offers ample perspectives and insights into the current and future challenges for the fabrication of skeletal tissues aiming towards clinical and biomedical applications.


Assuntos
Materiais Biocompatíveis , Bioimpressão , Humanos , Tinta , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais
10.
J Mech Behav Biomed Mater ; 105: 103671, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32090892

RESUMO

Evolution of metallurgy and biomaterials has progressively shifted the focus of metallic bone-interfacing implant design from adequate mechanical strength and biocompatibility to rapid osseointegration and infection inhibition. The now relatively well-established technology - powder bed additive manufacturing (AM), offers the ability to fabricate porous implants with precise mechanical properties, topological pore architectures and patient-specific design functions, has revolutionized the production of customized multifunctional metallic implants for the individual patient with anatomic-specific requirement. Even though AM titanium and its alloy Ti-6Al-4V have been investigated and adopted for clinical application for decades, the development of porous AM titanium implants is far from complete and further research is required to achieve excellent long-term clinical performance. In this review, we summarize the current status of AM in bone-interfacing implant fabrication, with particular focus on the experimental outcomes of various factors that influence osseointegration, bone and vascular ingrowth as well as hybrid strategies to combat infection, including: pore size, porosity, pore structure, surface modification techniques and incorporation of biological factors. In addition, we also discuss the osteogenic capacity of constructs fabricated through different manufacturing methods and titanium alloys. To this end, we highlight the exciting prospect of AM for bone-interfacing implant manufacture through optimization via material development, implant design, bio-functionalization to clinical evaluation to provide enhanced patient specificity and long-term function.


Assuntos
Ortopedia , Titânio , Ligas , Humanos , Osseointegração , Porosidade
11.
Adv Healthc Mater ; 9(15): e1901648, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32352649

RESUMO

3D bioprinting involves the combination of 3D printing technologies with cells, growth factors and biomaterials, and has been considered as one of the most advanced tools for tissue engineering and regenerative medicine (TERM). However, despite multiple breakthroughs, it is evident that numerous challenges need to be overcome before 3D bioprinting will eventually become a clinical solution for a variety of TERM applications. To produce a 3D structure that is biologically functional, cell-laden bioinks must be optimized to meet certain key characteristics including rheological properties, physico-mechanical properties, and biofunctionality; a difficult task for a single component bioink especially for extrusion based bioprinting. As such, more recent research has been centred on multicomponent bioinks consisting of a combination of two or more biomaterials to improve printability, shape fidelity and biofunctionality. In this article, multicomponent hydrogel-based bioink systems are systemically reviewed based on the inherent nature of the bioink (natural or synthetic hydrogels), including the most current examples demonstrating properties and advances in application of multicomponent bioinks, specifically for extrusion based 3D bioprinting. This review article will assist researchers in the field in identifying the most suitable bioink based on their requirements, as well as pinpointing current unmet challenges in the field.


Assuntos
Bioimpressão , Materiais Biocompatíveis , Hidrogéis , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais
12.
Biomater Sci ; 8(24): 7093-7105, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33079079

RESUMO

The biophysical properties of biomaterials are key to directing the biological responses and biomaterial integration and function in in situ tissue engineering approaches. We present silk photo-lyogels, a biomaterial format fabricated using a new combinatorial approach involving photo-initiated crosslinking of silk fibroin via di-tyrosine bonds followed by lyophilization to generate 3D, porous lyogels showing physical properties distinct to those of lyophilized silk sponges or silk hydrogels. This fabrication approach allowed introduction of microchannels into 3D constructs via biofabrication approaches involving silk crosslinking around an array of 3D printed photocurable resin pillars to generate parallel channels or around a 3D printed sacrificial thermosensitive gel to generate interconnected channels in a rapid manner and without the need for chemical modification of silk fibroin. The presence of interconnected microchannels significantly improved migration of endothelial cells into 3D photo-lyogels in vitro, and tissue infiltration, photo-lyogel integration, and vascularization when implanted in vivo in a mouse subcutaneous model. Taken together, these findings demonstrate the feasibility and utility of a new combinatorial fabrication approach for generation of silk biomaterials that support cell interactions and implant integration for in situ tissue engineering approaches.


Assuntos
Fibroínas , Animais , Materiais Biocompatíveis , Células Endoteliais , Camundongos , Seda , Engenharia Tecidual , Alicerces Teciduais
13.
J Biomed Mater Res A ; 106(11): 2899-2909, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30369008

RESUMO

Tumor spheroids are considered to be effective in drug screening and evaluation. Three-dimensional scaffold-based cell culture becomes very promising in producing multicellular spheroids. Different from other approaches, 3D scaffolds mimic in vivo cellular microenvironment which encourages intercellular and extracellular interactions. The properties of the cellular microenvironment include the surface wettability, chemistry, and charge of the scaffolds which may influence cell attachment, proliferation as well as migration and these properties are essential for multicellular spheroids formation. Through co-polymerization with different carboxylic acids, we demonstrate that the surface charge density and hydrophobicity of the microenvironment have a great impact on the tumor spheroids formation progress and their size distribution. Our results show that a scaffold with a moderate negative charge density and a highly hydrophilic surface promotes cell proliferation, resulting in quicker and larger spheroids formation. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2899-2909, 2018.


Assuntos
Resinas Acrílicas/química , Géis/química , Esferoides Celulares/citologia , Alicerces Teciduais/química , Ânions/química , Materiais Biocompatíveis/química , Técnicas de Cultura de Células , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células , Microambiente Celular , Células HEK293 , Células HeLa , Humanos , Temperatura
14.
ACS Appl Mater Interfaces ; 10(44): 37783-37796, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30360109

RESUMO

To tune the chemical, physical, and mechanical microenvironment for cardiac stromal cells to treat acute myocardial infarction (MI), we prepared a series of thermally responsive microgels with different surface charges (positive, negative, and neutral) and different degrees of hydrophilicity, as well as functional groups (carboxyl, hydroxyl, amino, and methyl). These microgels were used as injectable hydrogels to create an optimized microenvironment for cardiac stromal cells (CSCs). Our results indicated that a hydrophilic and negatively charged microenvironment created from poly( N-isopropylacrylamide- co-itaconic acid) was favorable for maintaining high viability of CSCs, promoting CSC proliferation and facilitating the formation of CSC spheroids. A large number of growth factors, such as vascular endothelial growth factor (VEGF), insulin-like growth factor I (IGF-1), and stromal-derived factor-1 (SDF-1) were released from the spheroids, promoting neonatal rat cardiomyocyte activation and survival. After injecting the poly( N-isopropylacrylamide- co-itaconic acid) microgel into mice, we examined their acute inflammation and T-cell immune reactions. The microgel itself did not elicit obvious immune response. We then injected the same microgel-encapsulated with CSCs into MI mice. The result revealed the treatment-promoted MI heart repair through angiogenesis and inhibition of apoptosis with an improved cell retention rate. This study will open a door for tailoring poly( N-isopropylacrylamide)-based microgel as a delivery vehicle for CSC therapy.


Assuntos
Hidrogéis/administração & dosagem , Infarto do Miocárdio/terapia , Miócitos Cardíacos/efeitos dos fármacos , Células Estromais/efeitos dos fármacos , Acrilamidas/administração & dosagem , Acrilamidas/química , Animais , Microambiente Celular/efeitos dos fármacos , Quimiocina CXCL12/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Hidrogéis/química , Interações Hidrofóbicas e Hidrofílicas/efeitos dos fármacos , Fator de Crescimento Insulin-Like I/genética , Camundongos , Infarto do Miocárdio/patologia , Miócitos Cardíacos/patologia , Polímeros/administração & dosagem , Polímeros/química , Ratos , Células Estromais/patologia , Succinatos/química , Linfócitos T/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/genética
15.
ACS Nano ; 11(10): 9738-9749, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-28929735

RESUMO

Stem cell transplantation is currently implemented clinically but is limited by low retention and engraftment of transplanted cells and the adverse effects of inflammation and immunoreaction when allogeneic or xenogeneic cells are used. Here, we demonstrate the safety and efficacy of encapsulating human cardiac stem cells (hCSCs) in thermosensitive poly(N-isopropylacrylamine-co-acrylic acid) or P(NIPAM-AA) nanogel in mouse and pig models of myocardial infarction (MI). Unlike xenogeneic hCSCs injected in saline, injection of nanogel-encapsulated hCSCs does not elicit systemic inflammation or local T cell infiltrations in immunocompetent mice. In mice and pigs with acute MI, injection of encapsulated hCSCs preserves cardiac function and reduces scar sizes, whereas injection of hCSCs in saline has an adverse effect on heart healing. In conclusion, thermosensitive nanogels can be used as a stem cell carrier: the porous and convoluted inner structure allows nutrient, oxygen, and secretion diffusion but can prevent the stem cells from being attacked by immune cells.


Assuntos
Acrilamidas/química , Acrilatos/química , Infarto do Miocárdio/terapia , Miócitos Cardíacos/citologia , Polietilenoglicóis/química , Polietilenoimina/química , Animais , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Nanogéis , Tamanho da Partícula , Propriedades de Superfície , Suínos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA