Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nanotechnology ; 33(38)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35609524

RESUMO

Polydopamine (PDA)-modified NaEr0.8Yb0.2 F4nanoparticles were synthesized, with strong NIR-II emission, quantum yield of 29.63%, and excellent photothermal performance. Crystal phases and microstructures are characterized. Optical properties such as absorption, NIR-II emission, and light stability are studied, and the luminescence mechanism is discussed in detail. Key factors in NIR-II imaging were evaluated in fresh pork tissue, including penetration depth, spatial resolution, and signal-to-noise ratio (SNR). A high penetration depth of 5 mm and a high spatial resolution of 1 mm were detected. Mice are imaged in vivo afterintravenousinjection. Due to the accumulation of nanoparticles in the liver, high image quality with an SNR of 5.2 was detected in the abdomen of KM mice with hair. The photothermal conversion effect of PDA-modified NPs was twice that of the reported material. These NIR-II nanoparticles have superior optical properties, high photothermal efficiency and low cytotoxicity, and are potential fluorescent probes for further disease diagnosis and treatment.


Assuntos
Nanopartículas , Polímeros , Animais , Corantes Fluorescentes/química , Indóis , Camundongos , Nanopartículas/química , Fototerapia , Polímeros/química
2.
Guang Pu Xue Yu Guang Pu Fen Xi ; 32(5): 1418-22, 2012 May.
Artigo em Zh | MEDLINE | ID: mdl-22827104

RESUMO

Cellulose nano-whiskers/nano-hydroxyapatite composite was prepared with biomimetic mineralization using rod-like cellulose nano-whiskers as template. The cellulose nano-whiskers and cellulose nano-whiskers/nano-hydroxyapatite composite were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscope-energy dispersive analysis of X-rays (SEM-EDXA). Variation and distribution of carbon, oxygen, calcium, and phosphorus in the composites were studied. The morphologies and growth mechanism of nano-hydroxyapatite were analyzed. The results showed that nano-hydroxyapatite was formed on the surface of cellulose nano-whiskers; the carbon-oxygen ratio of cellulose nano-whiskers and cellulose nano-whiskers/nano-hydroxyapatite composite was 1.81 and 1.54, respectively; the calcium-phosphorus ratio of the composite was 1.70. The nucleation of nano-hydroxyapatite was around the hydroxyl groups of cellulose nano-whiskers. It is suggested that there is coordination between the hydroxyl groups of cellulose nano-whiskers and calcium ions of nano-hydroxyapatite. The nano-hydroxyapatite can distribute in the matrix of cellulose nano-whiskers. From the atomic force microscope (AFM) images, we can see that the diameter of the spherical nano-hydroxyapatite particles was about 20 nm.


Assuntos
Biomimética , Celulose/química , Durapatita/química , Nanoestruturas , Espectroscopia Fotoeletrônica , Difração de Raios X
3.
J Biomater Appl ; 35(2): 237-263, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32423319

RESUMO

Rare earth-doped nanoparticles have been widely used in disease diagnosis, drug delivery, tumor therapy, and bioimaging. Among various bioimaging methods, the fluorescence imaging technology based on the rare earth-doped nanoparticles can visually display the cell activity and lesion evolution in living animals, which is a powerful tool in biological technology and has being widely applied in medical and biological fields. Especially in the band of near infrared (700-1700 nm), the emissions show the characteristics of deep penetration due to low absorption, low photon scattering, and low autofluorescence interference. Furthermore, the rare earth-doped nanoparticles can be endowed with the water solubility, biocompatibility, drug-loading ability, and the targeting ability for different tumors by surface functionalization. This confirms its potential in the cancer diagnosis and treatment. In this review, we summarized the recent progress in the application of rare earth-doped nanoparticles in the field of bioimaging and tumor treatment. The luminescent mechanism, properties, and structure design were also discussed.


Assuntos
Metais Terras Raras/uso terapêutico , Nanopartículas/uso terapêutico , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Animais , Materiais Biocompatíveis/análise , Materiais Biocompatíveis/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Humanos , Medições Luminescentes/métodos , Imageamento por Ressonância Magnética/métodos , Metais Terras Raras/análise , Nanomedicina/métodos , Nanopartículas/análise , Imagem Óptica/métodos , Terapia Fototérmica/métodos , Tomografia Computadorizada por Raios X/métodos
4.
Sci Rep ; 5: 13142, 2015 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-26278788

RESUMO

Multiple studies have shown that diabetes mellitus is an established risk factor for periodontitis. Recently mesenchymal stem cells derived from periodontal ligament (PDLSCs) have been utilized to reconstruct tissues destroyed by chronic inflammation. However, impact of periodontitis with diabetes mellitus on PDLSCs and mechanisms mediating effects of complex microenvironments remain poorly understood. In this study, we found multiple differentiation potential of PDLSCs from chronic periodontitis with diabetes mellitus donors (D-PDLSCs) was damaged significantly. Inhibition of NF-κB signaling could rescue osteogenic potential of PDLSCs from simple chronic periodontitis patients (P-PDLSCs), whereas did not promote D-PDLSCs osteogenesis. In addition, we found expression of DKK1 in D-PDLSCs did not respond to osteogenic signal and decreased osteogenic potential of D-PDLSCs treated with DKK1 could be reversed. To further elucidate different character between P-PDLSCs and D-PDLSCs, we treated PDLSCs with TNF-α and advanced glycation end products (AGEs), and find out AGEs which enhance effect of TNF-α in PDLSCs might mediate special personality of D-PDLSCs. The adverse effect of AGEs in PDLSCs could be reversed when PDLSCs were treated with DKK1. These results suggested DKK1 mediating WNT signaling might be a therapy target to rescue potential of PDLSCs in periodontitis with diabetes mellitus.


Assuntos
Diabetes Mellitus Tipo 2/complicações , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Células-Tronco Mesenquimais/metabolismo , Ligamento Periodontal/citologia , Periodontite/complicações , Adulto , Idoso , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Produtos Finais de Glicação Avançada/farmacologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Masculino , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Osteogênese/efeitos dos fármacos , Fator de Crescimento Transformador beta/farmacologia , beta Catenina/antagonistas & inibidores , beta Catenina/genética , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA