Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Mol Biol Evol ; 34(1): 35-44, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27834665

RESUMO

Fungal decomposition of plant cell walls (PCW) is a complex process that has diverse industrial applications and huge impacts on the carbon cycle. White rot (WR) is a powerful mode of PCW decay in which lignin and carbohydrates are both degraded. Mechanistic studies of decay coupled with comparative genomic analyses have provided clues to the enzymatic components of WR systems and their evolutionary origins, but the complete suite of genes necessary for WR remains undetermined. Here, we use phylogenomic comparative methods, which we validate through simulations, to identify shifts in gene family diversification rates that are correlated with evolution of WR, using data from 62 fungal genomes. We detected 409 gene families that appear to be evolutionarily correlated with WR. The identified gene families encode well-characterized decay enzymes, e.g., fungal class II peroxidases and cellobiohydrolases, and enzymes involved in import and detoxification pathways, as well as 73 gene families that have no functional annotation. About 310 of the 409 identified gene families are present in the genome of the model WR fungus Phanerochaete chrysosporium and 192 of these (62%) have been shown to be upregulated under ligninolytic culture conditions, which corroborates the phylogeny-based functional inferences. These results illuminate the complexity of WR and suggest that its evolution has involved a general elaboration of the decay apparatus, including numerous gene families with as-yet unknown exact functions.


Assuntos
Fungos/genética , Madeira/microbiologia , Evolução Biológica , Biologia Computacional/métodos , Simulação por Computador , Bases de Dados de Ácidos Nucleicos , Evolução Molecular , Proteínas Fúngicas/genética , Fungos/metabolismo , Estudos de Associação Genética , Genoma Fúngico , Lignina/metabolismo , Filogenia , Doenças das Plantas/microbiologia , Madeira/metabolismo
2.
Appl Environ Microbiol ; 84(20)2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30097442

RESUMO

Fungi play a key role cycling nutrients in forest ecosystems, but the mechanisms remain uncertain. To clarify the enzymatic processes involved in wood decomposition, the metatranscriptomics and metaproteomics of extensively decayed lodgepole pine were examined by RNA sequencing (RNA-seq) and liquid chromatography-tandem mass spectrometry (LC-MS/MS), respectively. Following de novo metatranscriptome assembly, 52,011 contigs were searched for functional domains and homology to database entries. Contigs similar to basidiomycete transcripts dominated, and many of these were most closely related to ligninolytic white rot fungi or cellulolytic brown rot fungi. A diverse array of carbohydrate-active enzymes (CAZymes) representing a total of 132 families or subfamilies were identified. Among these were 672 glycoside hydrolases, including highly expressed cellulases or hemicellulases. The CAZymes also included 162 predicted redox enzymes classified within auxiliary activity (AA) families. Eighteen of these were manganese peroxidases, which are key components of ligninolytic white rot fungi. The expression of other redox enzymes supported the working of hydroquinone reduction cycles capable of generating reactive hydroxyl radicals. These have been implicated as diffusible oxidants responsible for cellulose depolymerization by brown rot fungi. Thus, enzyme diversity and the coexistence of brown and white rot fungi suggest complex interactions of fungal species and degradative strategies during the decay of lodgepole pine.IMPORTANCE The deconstruction of recalcitrant woody substrates is a central component of carbon cycling and forest health. Laboratory investigations have contributed substantially toward understanding the mechanisms employed by model wood decay fungi, but few studies have examined the physiological processes in natural environments. Herein, we identify the functional genes present in field samples of extensively decayed lodgepole pine (Pinus contorta), a major species distributed throughout the North American Rocky Mountains. The classified transcripts and proteins revealed a diverse array of oxidative and hydrolytic enzymes involved in the degradation of lignocellulose. The evidence also strongly supports simultaneous attack by fungal species employing different enzymatic strategies.


Assuntos
Basidiomycota/enzimologia , Basidiomycota/genética , Lignina/metabolismo , Pinus/microbiologia , Celulases/genética , Perfilação da Expressão Gênica , Genoma Fúngico , Glicosídeo Hidrolases/genética , Hidrólise , Oxirredução , Proteômica , Madeira/microbiologia
3.
Appl Environ Microbiol ; 84(16)2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29884757

RESUMO

Wood-decaying fungi tend to have characteristic substrate ranges that partly define their ecological niche. Fomitopsis pinicola is a brown rot species of Polyporales that is reported on 82 species of softwoods and 42 species of hardwoods. We analyzed the gene expression levels and RNA editing profiles of F. pinicola from submerged cultures with ground wood powder (sampled at 5 days) or solid wood wafers (sampled at 10 and 30 days), using aspen, pine, and spruce substrates (aspen was used only in submerged cultures). Fomitopsis pinicola expressed similar sets of wood-degrading enzymes typical of brown rot fungi across all culture conditions and time points. Nevertheless, differential gene expression and RNA editing were observed across all pairwise comparisons of substrates and time points. Genes exhibiting differential expression and RNA editing encode diverse enzymes with known or potential function in brown rot decay, including laccase, benzoquinone reductase, aryl alcohol oxidase, cytochrome P450s, and various glycoside hydrolases. There was no overlap between differentially expressed and differentially edited genes, suggesting that these may provide F. pinicola with independent mechanisms for responding to different conditions. Comparing transcriptomes from submerged cultures and wood wafers, we found that culture conditions had a greater impact on global expression profiles than substrate wood species. In contrast, the suites of genes subject to RNA editing were much less affected by culture conditions. These findings highlight the need for standardization of culture conditions in studies of gene expression in wood-decaying fungi.IMPORTANCE All species of wood-decaying fungi occur on a characteristic range of substrates (host plants), which may be broad or narrow. Understanding the mechanisms that enable fungi to grow on particular substrates is important for both fungal ecology and applied uses of different feedstocks in industrial processes. We grew the wood-decaying polypore Fomitopsis pinicola on three different wood species, aspen, pine, and spruce, under various culture conditions. We examined both gene expression (transcription levels) and RNA editing (posttranscriptional modification of RNA, which can potentially yield different proteins from the same gene). We found that F. pinicola is able to modify both gene expression and RNA editing profiles across different substrate species and culture conditions. Many of the genes involved encode enzymes with known or predicted functions in wood decay. This work provides clues to how wood-decaying fungi may adjust their arsenal of decay enzymes to accommodate different host substrates.


Assuntos
Coriolaceae/genética , Proteínas Fúngicas/genética , Edição de RNA , Madeira/microbiologia , Coriolaceae/enzimologia , Sistema Enzimático do Citocromo P-450/genética , Regulação Fúngica da Expressão Gênica , Glicosídeo Hidrolases , Lacase/genética , Lignina/metabolismo , Pinus/microbiologia , Transcriptoma , Madeira/metabolismo
4.
Proc Natl Acad Sci U S A ; 111(27): 9923-8, 2014 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-24958869

RESUMO

Basidiomycota (basidiomycetes) make up 32% of the described fungi and include most wood-decaying species, as well as pathogens and mutualistic symbionts. Wood-decaying basidiomycetes have typically been classified as either white rot or brown rot, based on the ability (in white rot only) to degrade lignin along with cellulose and hemicellulose. Prior genomic comparisons suggested that the two decay modes can be distinguished based on the presence or absence of ligninolytic class II peroxidases (PODs), as well as the abundance of enzymes acting directly on crystalline cellulose (reduced in brown rot). To assess the generality of the white-rot/brown-rot classification paradigm, we compared the genomes of 33 basidiomycetes, including four newly sequenced wood decayers, and performed phylogenetically informed principal-components analysis (PCA) of a broad range of gene families encoding plant biomass-degrading enzymes. The newly sequenced Botryobasidium botryosum and Jaapia argillacea genomes lack PODs but possess diverse enzymes acting on crystalline cellulose, and they group close to the model white-rot species Phanerochaete chrysosporium in the PCA. Furthermore, laboratory assays showed that both B. botryosum and J. argillacea can degrade all polymeric components of woody plant cell walls, a characteristic of white rot. We also found expansions in reducing polyketide synthase genes specific to the brown-rot fungi. Our results suggest a continuum rather than a dichotomy between the white-rot and brown-rot modes of wood decay. A more nuanced categorization of rot types is needed, based on an improved understanding of the genomics and biochemistry of wood decay.


Assuntos
Basidiomycota/genética , Basidiomycota/metabolismo , Genoma Fúngico , Madeira , Basidiomycota/classificação , Lignina/metabolismo , Dados de Sequência Molecular , Filogenia
5.
Appl Environ Microbiol ; 82(13): 3979-3987, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27107121

RESUMO

UNLABELLED: Certain wood decay basidiomycetes, collectively referred to as brown rot fungi, rapidly depolymerize cellulose while leaving behind the bulk of cell wall lignin as a modified residue. The mechanism(s) employed is unclear, but considerable evidence implicates the involvement of diffusible oxidants generated via Fenton-like chemistry. Toward a better understanding of this process, we have examined the transcriptome and secretome of Wolfiporia cocos when cultivated on media containing glucose, purified crystalline cellulose, aspen (Populus grandidentata), or lodgepole pine (Pinus contorta) as the sole carbon source. Compared to the results obtained with glucose, 30, 183, and 207 genes exhibited 4-fold increases in transcript levels in cellulose, aspen, and lodgepole pine, respectively. Mass spectrometry identified peptides corresponding to 64 glycoside hydrolase (GH) proteins, and of these, 17 corresponded to transcripts upregulated on one or both woody substrates. Most of these genes were broadly categorized as hemicellulases or chitinases. Consistent with an important role for hydroxyl radical in cellulose depolymerization, high transcript levels and upregulation were observed for genes involved in iron homeostasis, iron reduction, and extracellular peroxide generation. These patterns of regulation differ markedly from those of the closely related brown rot fungus Postia placenta and expand the number of enzymes potentially involved in the oxidative depolymerization of cellulose. IMPORTANCE: The decomposition of wood is an essential component of nutrient cycling in forest ecosystems. Few microbes have the capacity to efficiently degrade woody substrates, and the mechanism(s) is poorly understood. Toward a better understanding of these processes, we show that when grown on wood as a sole carbon source the brown rot fungus W. cocos expresses a unique repertoire of genes involved in oxidative and hydrolytic conversions of cell walls.


Assuntos
Proteínas Fúngicas/metabolismo , Perfilação da Expressão Gênica , Lignina/metabolismo , Proteoma/análise , Wolfiporia/química , Wolfiporia/genética , Carbono/metabolismo , Meios de Cultura/química , Espectrometria de Massas , Wolfiporia/crescimento & desenvolvimento , Wolfiporia/metabolismo
6.
Appl Environ Microbiol ; 81(22): 7802-12, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26341198

RESUMO

Since uncertainty remains about how white rot fungi oxidize and degrade lignin in wood, it would be useful to monitor changes in fungal gene expression during the onset of ligninolysis on a natural substrate. We grew Phanerochaete chrysosporium on solid spruce wood and included oxidant-sensing beads bearing the fluorometric dye BODIPY 581/591 in the cultures. Confocal fluorescence microscopy of the beads showed that extracellular oxidation commenced 2 to 3 days after inoculation, coincident with cessation of fungal growth. Whole transcriptome shotgun sequencing (RNA-seq) analyses based on the v.2.2 P. chrysosporium genome identified 356 genes whose transcripts accumulated to relatively high levels at 96 h and were at least four times the levels found at 40 h. Transcripts encoding some lignin peroxidases, manganese peroxidases, and auxiliary enzymes thought to support their activity showed marked apparent upregulation. The data were also consistent with the production of ligninolytic extracellular reactive oxygen species by the action of manganese peroxidase-catalyzed lipid peroxidation, cellobiose dehydrogenase-catalyzed Fe(3+) reduction, and oxidase-catalyzed H2O2 production, but the data do not support a role for iron-chelating glycopeptides. In addition, transcripts encoding a variety of proteins with possible roles in lignin fragment uptake and processing, including 27 likely transporters and 18 cytochrome P450s, became more abundant after the onset of extracellular oxidation. Genes encoding cellulases showed little apparent upregulation and thus may be expressed constitutively. Transcripts corresponding to 165 genes of unknown function accumulated more than 4-fold after oxidation commenced, and some of them may merit investigation as possible contributors to ligninolysis.


Assuntos
Regulação Fúngica da Expressão Gênica , Lignina/metabolismo , Phanerochaete/genética , Madeira/microbiologia , Fluorometria , Microesferas , Análise de Sequência com Séries de Oligonucleotídeos , Oxirredução , Phanerochaete/metabolismo , Picea/microbiologia , Análise de Sequência de RNA
7.
Proc Natl Acad Sci U S A ; 109(43): 17501-6, 2012 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-23045686

RESUMO

Agaricus bisporus is the model fungus for the adaptation, persistence, and growth in the humic-rich leaf-litter environment. Aside from its ecological role, A. bisporus has been an important component of the human diet for over 200 y and worldwide cultivation of the "button mushroom" forms a multibillion dollar industry. We present two A. bisporus genomes, their gene repertoires and transcript profiles on compost and during mushroom formation. The genomes encode a full repertoire of polysaccharide-degrading enzymes similar to that of wood-decayers. Comparative transcriptomics of mycelium grown on defined medium, casing-soil, and compost revealed genes encoding enzymes involved in xylan, cellulose, pectin, and protein degradation are more highly expressed in compost. The striking expansion of heme-thiolate peroxidases and ß-etherases is distinctive from Agaricomycotina wood-decayers and suggests a broad attack on decaying lignin and related metabolites found in humic acid-rich environment. Similarly, up-regulation of these genes together with a lignolytic manganese peroxidase, multiple copper radical oxidases, and cytochrome P450s is consistent with challenges posed by complex humic-rich substrates. The gene repertoire and expression of hydrolytic enzymes in A. bisporus is substantially different from the taxonomically related ectomycorrhizal symbiont Laccaria bicolor. A common promoter motif was also identified in genes very highly expressed in humic-rich substrates. These observations reveal genetic and enzymatic mechanisms governing adaptation to the humic-rich ecological niche formed during plant degradation, further defining the critical role such fungi contribute to soil structure and carbon sequestration in terrestrial ecosystems. Genome sequence will expedite mushroom breeding for improved agronomic characteristics.


Assuntos
Adaptação Fisiológica/genética , Agaricus/genética , Ecologia , Genoma Fúngico , Agaricus/metabolismo , Agaricus/fisiologia , Evolução Molecular , Lignina/metabolismo
8.
Appl Environ Microbiol ; 80(7): 2062-70, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24441164

RESUMO

The white-rot basidiomycetes efficiently degrade all wood cell wall polymers. Generally, these fungi simultaneously degrade cellulose and lignin, but certain organisms, such as Ceriporiopsis subvermispora, selectively remove lignin in advance of cellulose degradation. However, relatively little is known about the mechanism of selective ligninolysis. To address this issue, C. subvermispora was grown in liquid medium containing ball-milled aspen, and nano-liquid chromatography-tandem mass spectrometry was used to identify and estimate extracellular protein abundance over time. Several manganese peroxidases and an aryl alcohol oxidase, both associated with lignin degradation, were identified after 3 days of incubation. A glycoside hydrolase (GH) family 51 arabinofuranosidase was also identified after 3 days but then successively decreased in later samples. Several enzymes related to cellulose and xylan degradation, such as GH10 endoxylanase, GH5_5 endoglucanase, and GH7 cellobiohydrolase, were detected after 5 days. Peptides corresponding to potential cellulose-degrading enzymes GH12, GH45, lytic polysaccharide monooxygenase, and cellobiose dehydrogenase were most abundant after 7 days. This sequential production of enzymes provides a mechanism consistent with selective ligninolysis by C. subvermispora.


Assuntos
Coriolaceae/enzimologia , Coriolaceae/metabolismo , Enzimas/metabolismo , Proteínas Fúngicas/metabolismo , Lignina/metabolismo , Proteoma/análise , Madeira/microbiologia , Biotransformação , Cromatografia Líquida , Coriolaceae/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Espectrometria de Massas , Fatores de Tempo
9.
Appl Environ Microbiol ; 80(18): 5828-35, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25015893

RESUMO

We examined gene expression patterns in the lignin-degrading fungus Phanerochaete chrysosporium when it colonizes hybrid poplar (Populus alba × tremula) and syringyl (S)-rich transgenic derivatives. A combination of microarrays and liquid chromatography-tandem mass spectrometry (LC-MS/MS) allowed detection of a total of 9,959 transcripts and 793 proteins. Comparisons of P. chrysosporium transcript abundance in medium containing poplar or glucose as a sole carbon source showed 113 regulated genes, 11 of which were significantly higher (>2-fold, P < 0.05) in transgenic line 64 relative to the parental line. Possibly related to the very large amounts of syringyl (S) units in this transgenic tree (94 mol% S), several oxidoreductases were among the upregulated genes. Peptides corresponding to a total of 18 oxidoreductases were identified in medium consisting of biomass from line 64 or 82 (85 mol% S) but not in the parental clone (65 mol% S). These results demonstrate that P. chrysosporium gene expression patterns are substantially influenced by lignin composition.


Assuntos
Regulação Fúngica da Expressão Gênica , Phanerochaete/crescimento & desenvolvimento , Phanerochaete/metabolismo , Populus/genética , Madeira/metabolismo , Madeira/microbiologia , Carbono/metabolismo , Cromatografia Líquida , Meios de Cultura/química , Perfilação da Expressão Gênica , Genótipo , Lignina/metabolismo , Análise em Microsséries , Phanerochaete/genética , Espectrometria de Massas em Tandem
10.
Fungal Genet Biol ; 55: 22-31, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23583597

RESUMO

The oxidative enzymatic machinery for degradation of organic substrates in Agaricus bisporus (Ab) is at the core of the carbon recycling mechanisms in this fungus. To date, 156 genes have been tentatively identified as part of this oxidative enzymatic machinery, which includes 26 peroxidase encoding genes, nine copper radical oxidase [including three putative glyoxal oxidase-encoding genes (GLXs)], 12 laccases sensu stricto and 109 cytochrome P450 monooxygenases. Comparative analyses of these enzymes in Ab with those of the white-rot fungus, Phanerochaete chrysosporium, the brown-rot fungus, Postia placenta, the coprophilic litter fungus, Coprinopsis cinerea and the ectomychorizal fungus, Laccaria bicolor, revealed enzyme diversity consistent with adaptation to substrates rich in humic substances and partially degraded plant material. For instance, relative to wood decay fungi, Ab cytochrome P450 genes were less numerous (109 gene models), distributed among distinctive families, and lacked extensive duplication and clustering. Viewed together with P450 transcript accumulation patterns in three tested growth conditions, these observations were consistent with the unique Ab lifestyle. Based on tandem gene arrangements, a certain degree of gene duplication seems to have occurred in this fungus in the copper radical oxidase (CRO) and the laccase gene families. In Ab, high transcript levels and regulation of the heme-thiolate peroxidases, two manganese peroxidases and the three GLX-like genes are likely in response to complex natural substrates, including lignocellulose and its derivatives, thereby suggesting an important role in lignin degradation. On the other hand, the expression patterns of the related CROs suggest a developmental role in this fungus. Based on these observations, a brief comparative genomic overview of the Ab oxidative enzyme machinery is presented.


Assuntos
Agaricus/enzimologia , Agaricus/genética , Lignina/metabolismo , Redes e Vias Metabólicas/genética , Oxirredutases/genética , Biotransformação , Biologia Computacional , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Variação Genética , Genoma Fúngico , Oxirredutases/metabolismo
11.
Curr Opin Plant Biol ; 11(3): 349-55, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18359268

RESUMO

The degradation of lignin by filamentous fungi is a major route for the recycling of photosynthetically fixed carbon, and the oxidative mechanisms employed have potential biotechnological applications. The lignin peroxidases (LiPs), manganese peroxidases (MnPs), and closely related enzymes of white rot basidiomycetes are likely contributors to fungal ligninolysis. Many of them cleave lignin model compounds to give products consistent with those found in residual white-rotted lignin, and at least some depolymerize synthetic lignins. However, none has yet been shown to delignify intact lignocellulose in vitro. The likely reason is that the peroxidases need to act in concert with small oxidants that can penetrate lignified tissues. Recent progress in the dissolution and NMR spectroscopy of plant cell walls may allow new inferences about the nature of the oxidants involved. Furthermore, increasing knowledge about the genomes of ligninolytic fungi may help us decide whether any of the peroxidases has an essential role.


Assuntos
Proteínas Fúngicas/metabolismo , Lignina/metabolismo , Peroxidases/metabolismo , Catálise , Lignina/química , Estrutura Molecular
12.
Appl Environ Microbiol ; 76(11): 3599-610, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20400566

RESUMO

Cellulose degradation by brown rot fungi, such as Postia placenta, is poorly understood relative to the phylogenetically related white rot basidiomycete, Phanerochaete chrysosporium. To elucidate the number, structure, and regulation of genes involved in lignocellulosic cell wall attack, secretome and transcriptome analyses were performed on both wood decay fungi cultured for 5 days in media containing ball-milled aspen or glucose as the sole carbon source. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), a total of 67 and 79 proteins were identified in the extracellular fluids of P. placenta and P. chrysosporium cultures, respectively. Viewed together with transcript profiles, P. chrysosporium employs an array of extracellular glycosyl hydrolases to simultaneously attack cellulose and hemicelluloses. In contrast, under these same conditions, P. placenta secretes an array of hemicellulases but few potential cellulases. The two species display distinct expression patterns for oxidoreductase-encoding genes. In P. placenta, these patterns are consistent with an extracellular Fenton system and include the upregulation of genes involved in iron acquisition, in the synthesis of low-molecular-weight quinones, and possibly in redox cycling reactions.


Assuntos
Coriolaceae/genética , Proteínas Fúngicas/metabolismo , Perfilação da Expressão Gênica , Phanerochaete/genética , Proteoma , Madeira/microbiologia , Celulose/metabolismo , Cromatografia Líquida , Coriolaceae/química , Proteínas Fúngicas/análise , Glicosiltransferases/metabolismo , Oxirredutases/metabolismo , Phanerochaete/química , Polissacarídeos/metabolismo , Espectrometria de Massas em Tandem , Madeira/metabolismo
13.
Nat Biotechnol ; 22(6): 695-700, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15122302

RESUMO

White rot fungi efficiently degrade lignin, a complex aromatic polymer in wood that is among the most abundant natural materials on earth. These fungi use extracellular oxidative enzymes that are also able to transform related aromatic compounds found in explosive contaminants, pesticides and toxic waste. We have sequenced the 30-million base-pair genome of Phanerochaete chrysosporium strain RP78 using a whole genome shotgun approach. The P. chrysosporium genome reveals an impressive array of genes encoding secreted oxidases, peroxidases and hydrolytic enzymes that cooperate in wood decay. Analysis of the genome data will enhance our understanding of lignocellulose degradation, a pivotal process in the global carbon cycle, and provide a framework for further development of bioprocesses for biomass utilization, organopollutant degradation and fiber bleaching. This genome provides a high quality draft sequence of a basidiomycete, a major fungal phylum that includes important plant and animal pathogens.


Assuntos
Celulose/metabolismo , DNA Fúngico/genética , Genoma Fúngico , Lignina/metabolismo , Phanerochaete/genética , Composição de Bases/genética , Biodegradação Ambiental , Classificação , Sistema Enzimático do Citocromo P-450/genética , DNA Fúngico/química , DNA Fúngico/isolamento & purificação , Éxons/genética , Proteínas Fúngicas/classificação , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Biblioteca Gênica , Genes Fúngicos/genética , Genômica , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Íntrons/genética , Lacase/genética , Lacase/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Peroxidases/genética , Peroxidases/metabolismo , Phanerochaete/metabolismo , Polissacarídeos/metabolismo , Retroelementos/genética , Análise de Sequência de DNA , Transposases/genética
14.
J Biotechnol ; 118(1): 17-34, 2005 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-15888348

RESUMO

The white rot basidiomycete, Phanerochaete chrysosporium, employs an array of extracellular enzymes to completely degrade the major polymers of wood: cellulose, hemicellulose and lignin. Towards the identification of participating enzymes, 268 likely secreted proteins were predicted using SignalP and TargetP algorithms. To assess the reliability of secretome predictions and to evaluate the usefulness of the current database, we performed shotgun LC-MS/MS on cultures grown on standard cellulose-containing medium. A total of 182 unique peptide sequences were matched to 50 specific genes, of which 24 were among the secretome subset. Underscoring the rich genetic diversity of P. chrysosporium, identifications included 32 glycosyl hydrolases. Functionally interconnected enzyme groups were recognized. For example, the multiple endoglucanases and processive exocellobiohydrolases observed quite probably attack cellulose in a synergistic manner. In addition, a hemicellulolytic system included endoxylanases, alpha-galactosidase, acetyl xylan esterase, and alpha-l-arabinofuranosidase. Glucose and cellobiose metabolism likely involves cellobiose dehydrogenase, glucose oxidase, and various inverting glycoside hydrolases, all perhaps enhanced by an epimerase. To evaluate the completeness of the current database, mass spectroscopy analysis was performed on a larger and more inclusive dataset containing all possible ORFs. This allowed identification of a previously undetected hypothetical protein and a putative acid phosphatase. The expression of several genes was supported by RT-PCR amplification of their cDNAs.


Assuntos
Celulose/metabolismo , Bases de Dados de Proteínas , Enzimas/metabolismo , Espectrometria de Massas/métodos , Mapeamento de Peptídeos/métodos , Phanerochaete/enzimologia , Proteoma/metabolismo , Enzimas/química , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Proteoma/química , Análise de Sequência de Proteína/métodos
15.
Science ; 333(6043): 762-5, 2011 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-21764756

RESUMO

Brown rot decay removes cellulose and hemicellulose from wood--residual lignin contributing up to 30% of forest soil carbon--and is derived from an ancestral white rot saprotrophy in which both lignin and cellulose are decomposed. Comparative and functional genomics of the "dry rot" fungus Serpula lacrymans, derived from forest ancestors, demonstrated that the evolution of both ectomycorrhizal biotrophy and brown rot saprotrophy were accompanied by reductions and losses in specific protein families, suggesting adaptation to an intercellular interaction with plant tissue. Transcriptome and proteome analysis also identified differences in wood decomposition in S. lacrymans relative to the brown rot Postia placenta. Furthermore, fungal nutritional mode diversification suggests that the boreal forest biome originated via genetic coevolution of above- and below-ground biota.


Assuntos
Basidiomycota/genética , Biodiversidade , Parede Celular/metabolismo , Micorrizas/genética , Árvores/microbiologia , Madeira/microbiologia , Basidiomycota/classificação , Basidiomycota/enzimologia , Basidiomycota/fisiologia , Evolução Biológica , Biota , Coriolaceae/enzimologia , Coriolaceae/genética , Coriolaceae/fisiologia , Perfilação da Expressão Gênica , Genes Fúngicos , Genômica , Lignina/metabolismo , Magnoliopsida/microbiologia , Micorrizas/enzimologia , Micorrizas/fisiologia , Oxirredutases/genética , Oxirredutases/metabolismo , Peroxidases/genética , Peroxidases/metabolismo , Filogenia , Proteoma , Simbiose , Traqueófitas/microbiologia , Madeira/metabolismo
16.
Fungal Genet Biol ; 44(2): 77-87, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16971147

RESUMO

The US Department of Energy has assembled a high quality draft genome of Phanerochaete chrysosporium, a white rot Basidiomycete capable of completely degrading all major components of plant cell walls including cellulose, hemicellulose and lignin. Hundreds of sequences are predicted to encode extracellular enzymes including an impressive number of oxidative enzymes potentially involved in lignocellulose degradation. Herein, we summarize the number, organization, and expression of genes encoding peroxidases, copper radical oxidases, FAD-dependent oxidases, and multicopper oxidases. Possibly relevant to extracellular oxidative systems are genes involved in posttranslational processes and a large number of hypothetical proteins.


Assuntos
Lignina/metabolismo , Oxirredutases/metabolismo , Phanerochaete/metabolismo , Phanerochaete/enzimologia , Phanerochaete/genética
17.
Mol Genet Genomics ; 277(1): 43-55, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17033809

RESUMO

We describe the structure, organization, and transcriptional impact of repetitive elements within the lignin-degrading basidiomycete, Phanerochaete chrysosporium. Searches of the P. chrysosporium genome revealed five copies of pce1, a ~1,750-nt non-autonomous, class II element. Alleles encoding a putative glucosyltransferase and a cytochrome P450 harbor pce insertions and produce incomplete transcripts. Class I elements included pcret1, an intact 8.14-kb gypsy-like retrotransposon inserted within a member of the multicopper oxidase gene family. Additionally, we describe a complex insertion of nested transposons within another putative cytochrome P450 gene. The disrupted allele lies within a cluster of >14 genes, all of which encode family 64 cytochrome P450s. Components of the insertion include a disjoint copia-like element, pcret3, the pol domain of a second retroelement, pcret2, and a duplication of an extended ORF of unknown function. As in the case of the pce elements, pcret1 and pcret2/3 insertions are confined to single alleles, transcripts of which are truncated. The corresponding wild-type alleles are apparently unaffected. In aggregate, P. chrysosporium harbors a complex array of repetitive elements, at least five of which directly influence expression of genes within families of structurally related sequences.


Assuntos
Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica/genética , Genes Fúngicos , Mutagênese Insercional , Phanerochaete/genética , Retroelementos/genética , Alelos , Sequência de Bases , Sistema Enzimático do Citocromo P-450/biossíntese , Sistema Enzimático do Citocromo P-450/genética , Proteínas Fúngicas/biossíntese , Regulação Enzimológica da Expressão Gênica/genética , Glucosiltransferases/biossíntese , Glucosiltransferases/genética , Lignina/metabolismo , Dados de Sequência Molecular , Fases de Leitura Aberta/genética , Phanerochaete/enzimologia , Transcrição Gênica
18.
Appl Environ Microbiol ; 72(7): 4871-7, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16820482

RESUMO

The white rot basidiomycete Phanerochaete chrysosporium produces an array of nonspecific extracellular enzymes thought to be involved in lignin degradation, including lignin peroxidases, manganese peroxidases, and the H2O2-generating copper radical oxidase, glyoxal oxidase (GLX). Preliminary analysis of the P. chrysosporium draft genome had identified six sequences with significant similarity to GLX and designated cro1 through cro6. The predicted mature protein sequences diverge substantially from one another, but the residues coordinating copper and constituting the radical redox site are conserved. Transcript profiles, microscopic examination, and lignin analysis of inoculated thin wood sections are consistent with differential regulation as decay advances. The cro2-encoded protein was detected by liquid chromatography-tandem mass spectrometry in defined medium. The cro2 cDNA was successfully expressed in Aspergillus nidulans under the control of the A. niger glucoamylase promoter and secretion signal. The recombinant CRO2 protein had a substantially different substrate preference than GLX. The role of structurally and functionally diverse cro genes in lignocellulose degradation remains to be established.


Assuntos
Oxirredutases do Álcool , Regulação Fúngica da Expressão Gênica , Lignina/metabolismo , Família Multigênica , Phanerochaete/enzimologia , Transcrição Gênica , Oxirredutases do Álcool/química , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Aspergillus/genética , Aspergillus/metabolismo , Biodegradação Ambiental , Meios de Cultura , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Phanerochaete/genética , Phanerochaete/crescimento & desenvolvimento , Populus/microbiologia , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA