Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Appl Microbiol ; 132(5): 3853-3869, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35262250

RESUMO

AIMS: We evaluated two species of human oral commensal streptococci in protection against dental caries induced by Streptococcus mutans. METHODS AND RESULTS: Candidate probiotics, Streptococcus sp. A12, Streptococcus sanguinis BCC23 and an arginine deiminase mutant of BCC23 (∆arcADS) were tested for their ability to reduce S. mutans-induced caries in an established mouse model. Mice were colonized with a probiotic, challenged with S. mutans, then intermittently reinoculated with a probiotic strain. Oral colonization of each strain and autochthonous bacteria was assessed by quantitative polymerase chain reaction. Both BCC23 strains, but not A12, were associated with markedly reduced sulcal caries, persistently colonized mucosal and dental biofilms, and significantly lowered S. mutans counts. All three strains enhanced mucosal colonization of autochthonous bacteria. In a follow-up experiment, when S. mutans was established first, dental and mucosal colonization of S. mutans was unaltered by a subsequent challenge with either BCC23 strain. Results between BCC23 and BCC23 ∆arcADS were equivalent. CONCLUSIONS: BCC23 is a potential probiotic to treat patients at high caries risk. Its effectiveness is independent of ADS activity, but initial dental cleaning to enhance establishment in dental biofilms may be required. SIGNIFICANCE AND IMPACT OF THE STUDY: In vivo testing of candidate probiotics is highly informative, as effectiveness is not always reflected by genotype or in vitro behaviours.


Assuntos
Cárie Dentária , Probióticos , Animais , Biofilmes , Cárie Dentária/prevenção & controle , Humanos , Camundongos , Probióticos/farmacologia , Streptococcus/genética , Streptococcus mutans/genética , Streptococcus sanguis
2.
Appl Environ Microbiol ; 87(4)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33277269

RESUMO

A collection of 113 Streptococcus strains from supragingival dental plaque of caries-free individuals were recently tested in vitro for direct antagonism of the dental caries pathogen Streptococcus mutans, and for their capacity for arginine catabolism via the arginine deiminase system (ADS). To advance their evaluation as potential probiotics, twelve strains of commensal oral streptococci with various antagonistic and ADS potentials were assessed in a mouse model for oral (i.e., oral mucosal pellicles and saliva) and dental colonization under four diets (healthy or high-sucrose, with or without prebiotic arginine). Colonization by autochthonous bacteria was also monitored. One strain failed to colonize, whereas oral colonization by the other eleven strains varied by 3 log units. Dental colonization was high for five strains regardless of diet, six strains increased colonization with at least one high-sucrose diet, and added dietary arginine decreased dental colonization of two strains. Streptococcus sp. A12 (high in vitro ADS activity and antagonism) and two engineered mutants lacking the ADS (ΔarcADS) or pyruvate oxidase-mediated H2O2 production (ΔspxB) were tested for competition against S. mutans UA159. A12 wild type and ΔarcADS colonized only transiently, whereas ΔspxB persisted, but without altering oral or dental colonization by S. mutans In testing four additional candidates, S. sanguinis BCC23 markedly attenuated S. mutans' oral and dental colonization, enhanced colonization of autochthonous bacteria, and decreased severity of smooth surface caries under highly cariogenic conditions. Results demonstrate the utility of the mouse model to evaluate potential probiotics, revealing little correlation between in vitro antagonism and competitiveness against S. mutans in vivo IMPORTANCE Our results demonstrate in vivo testing of potential oral probiotics can be accomplished and can yield information to facilitate the ultimate design and optimization of novel anti-caries probiotics. We show human oral commensals associated with dental health are an important source of potential probiotics that may be used to colonize patients under dietary conditions of highly varying cariogenicity. Assessment of competitiveness against dental caries pathogen Streptococcus mutans and impact on caries identified strains or genetic elements for further study. Results also uncovered strains that enhanced oral and dental colonization by autochthonous bacteria when challenged with S. mutans, suggesting cooperative interactions for future elucidation. Distinguishing a rare strain that effectively compete with S. mutans under conditions that promote caries further validates our systematic approach to more critically evaluate probiotics for use in humans.

3.
J Biol Chem ; 290(5): 2993-3008, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25512380

RESUMO

Saliva functions in innate immunity of the oral cavity, protecting against demineralization of teeth (i.e. dental caries), a highly prevalent infectious disease associated with Streptococcus mutans, a pathogen also linked to endocarditis and atheromatous plaques. Gel-forming mucins are a major constituent of saliva. Because Muc19 is the dominant salivary gel-forming mucin in mice, we studied Muc19(-/-) mice for changes in innate immune functions of saliva in interactions with S. mutans. When challenged with S. mutans and a cariogenic diet, total smooth and sulcal surface lesions are more than 2- and 1.6-fold higher in Muc19(-/-) mice compared with wild type, whereas the severity of lesions are up to 6- and 10-fold higher, respectively. Furthermore, the oral microbiota of Muc19(-/-) mice display higher levels of indigenous streptococci. Results emphasize the importance of a single salivary constituent in the innate immune functions of saliva. In vitro studies of S. mutans and Muc19 interactions (i.e. adherence, aggregation, and biofilm formation) demonstrate Muc19 poorly aggregates S. mutans. Nonetheless, aggregation is enhanced upon adding Muc19 to saliva from Muc19(-/-) mice, indicating Muc19 assists in bacterial clearance through formation of heterotypic complexes with salivary constituents that bind S. mutans, thus representing a novel innate immune function for salivary gel-forming mucins. In humans, expression of salivary MUC19 is unclear. We find MUC19 transcripts in salivary glands of seven subjects and demonstrate MUC19 glycoproteins in glandular mucous cells and saliva. Similarities and differences between mice and humans in the expression and functions of salivary gel-forming mucins are discussed.


Assuntos
Cárie Dentária/metabolismo , Cárie Dentária/microbiologia , Imunidade Inata/fisiologia , Mucinas/metabolismo , Saliva/metabolismo , Streptococcus mutans/patogenicidade , Adulto , Animais , Cárie Dentária/imunologia , Feminino , Humanos , Imunidade Inata/genética , Masculino , Camundongos , Pessoa de Meia-Idade , Mucinas/genética
4.
Biochim Biophys Acta ; 1812(12): 1567-76, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21945428

RESUMO

Carbonic anhydrase VI (CA VI), encoded by type A transcripts of the gene Car6, is a secretory product of salivary glands and is found in the enamel pellicle. Because higher caries prevalence is associated with lower salivary concentrations of CA VI in humans, we tested whether CA VI protects enamel surfaces from caries induced by Streptococcus mutans, using Car6(-/-) mice, in which salivary CA VI expression is absent. We detected aberrant Car6 type A transcripts in Car6(-/-) mice, likely targets for nonsense-mediated mRNA decay. Expression of the intracellular stress-induced isoform of CA VI encoded by type B transcripts was restricted to parotid and submandibular glands of wild type mice. The salivary function of Car6(-/-) mice was normal as assessed by the histology and protein/glycoprotein profiles of glands, salivary flow rates and protein/glycoprotein compositions of saliva. Surprisingly, total smooth surface caries and sulcal caries in Car6(-/-) mice were more than 6-fold and 2-fold lower than in wild type mice after infection with S. mutans strain UA159. Recoveries of S. mutans and total microbiota from molars were also lower in Car6(-/-) mice. To explore possible mechanisms for increased caries susceptibility, we found no differences in S. mutans adherence to salivary pellicles, in vitro. Interestingly, higher levels of Lactobacillus murinus and an unidentified Streptococcus species were cultivated from the oral microbiota of Car6(-/-) mice. Collective results suggest salivary CA VI may promote caries by modulating the oral microbiota to favor S. mutans colonization and/or by the enzymatic production of acid within plaque.


Assuntos
Anidrases Carbônicas/genética , Cárie Dentária/microbiologia , Placa Dentária/microbiologia , Saliva/enzimologia , Infecções Estreptocócicas/microbiologia , Streptococcus mutans/isolamento & purificação , Animais , Aderência Bacteriana , Anidrases Carbônicas/metabolismo , Cárie Dentária/patologia , Durapatita , Feminino , Deleção de Genes , Masculino , Metagenoma , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dente Molar/microbiologia , Dente Molar/patologia , RNA Ribossômico 16S/genética , Glândulas Salivares/microbiologia , Infecções Estreptocócicas/patologia , Streptococcus mutans/genética , Transcrição Gênica
5.
Front Physiol ; 12: 699104, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276419

RESUMO

Saliva protects dental surfaces against cavities (i. e., dental caries), a highly prevalent infectious disease frequently associated with acidogenic Streptococcus mutans. Substantial in vitro evidence supports amylase, a major constituent of saliva, as either protective against caries or supporting caries. We therefore produced mice with targeted deletion of salivary amylase (Amy1) and determined the impact on caries in mice challenged with S. mutans and fed a diet rich in sucrose to promote caries. Total smooth surface and sulcal caries were 2.35-fold and 1.79-fold greater in knockout mice, respectively, plus caries severities were twofold or greater on sulcal and smooth surfaces. In in vitro experiments with samples of whole stimulated saliva, amylase expression did not affect the adherence of S. mutans to saliva-coated hydroxyapatite and slightly increased its aggregation in solution (i.e., oral clearance). Conversely, S. mutans in biofilms formed in saliva with 1% glucose displayed no differences when cultured on polystyrene, but on hydroxyapatite was 40% less with amylase expression, suggesting that recognition by S. mutans of amylase bound to hydroxyapatite suppresses growth. However, this effect was overshadowed in vivo, as the recoveries of S. mutans from dental plaque were similar between both groups of mice, suggesting that amylase expression helps decrease plaque acids from S. mutans that dissolve dental enamel. With amylase deletion, commensal streptococcal species increased from ~75 to 90% of the total oral microbiota, suggesting that amylase may promote higher plaque pH by supporting colonization by base-producing oral commensals. Importantly, collective results indicate that amylase may serve as a biomarker of caries risk.

6.
mSphere ; 3(1)2018.
Artigo em Inglês | MEDLINE | ID: mdl-29435491

RESUMO

Transposon mutagenesis coupled with next-generation DNA sequencing (Tn-seq) is a powerful tool for discovering regions of the genome that are required for the survival of bacteria in different environments. We adapted this technique to the dental caries pathogen Streptococcus mutans UA159 and identified 11% of the genome as essential, with many genes encoding products required for replication, translation, lipid metabolism, and cell wall biogenesis. Comparison of the essential genome of S. mutans UA159 with those of selected other streptococci for which such information is available revealed several metabolic pathways and genes that are required in S. mutans, but not in some Streptococcus spp. We further identified genes that are essential for sustained growth in rich or defined medium, as well as for persistence in vivo in a rodent model of oral infection. Collectively, our results provide a novel and comprehensive view of the genes required for essential processes of S. mutans, many of which could represent potential targets for therapeutics. IMPORTANCE Tooth decay (dental caries) is a common cause of pain, impaired quality of life, and tooth loss in children and adults. It begins because of a compositional change in the microorganisms that colonize the tooth surface driven by repeated and sustained carbohydrate intake. Although several bacterial species are associated with tooth decay, Streptococcus mutans is the most common cause. Therefore, it is important to identify biological processes that contribute to the survival of S. mutans in the human mouth, with the aim of disrupting the processes with antimicrobial agents. We successfully applied Tn-seq to S. mutans, discovering genes that are required for survival, growth, and persistence, both in laboratory environments and in a mouse model of tooth decay. This work highlights new avenues for the control of an important human pathogen.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA