Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Pineal Res ; 76(5): e12994, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39158010

RESUMO

Internal circadian phase assessment is increasingly acknowledged as a critical clinical tool for the diagnosis, monitoring, and treatment of circadian rhythm sleep-wake disorders and for investigating circadian timing in other medical disorders. The widespread use of in-laboratory circadian phase assessments in routine practice has been limited, most likely because circadian phase assessment is not required by formal diagnostic nosologies, and is not generally covered by insurance. At-home assessment of salivary dim light melatonin onset (DLMO, a validated circadian phase marker) is an increasingly accepted approach to assess circadian phase. This approach may help meet the increased demand for assessments and has the advantages of lower cost and greater patient convenience. We reviewed the literature describing at-home salivary DLMO assessment methods and identified factors deemed to be important to successful implementation. Here, we provide specific protocol recommendations for conducting at-home salivary DLMO assessments to facilitate a standardized approach for clinical and research purposes. Key factors include control of lighting, sampling rate, and timing, and measures of patient compliance. We include findings from implementation of an optimization algorithm to determine the most efficient number and timing of samples in patients with Delayed Sleep-Wake Phase Disorder. We also provide recommendations for assay methods and interpretation. Providing definitive criteria for each factor, along with detailed instructions for protocol implementation, will enable more widespread adoption of at-home circadian phase assessments as a standardized clinical diagnostic, monitoring, and treatment tool.


Assuntos
Ritmo Circadiano , Melatonina , Saliva , Humanos , Melatonina/análise , Melatonina/metabolismo , Saliva/metabolismo , Saliva/química , Ritmo Circadiano/fisiologia
2.
J Pineal Res ; 70(3): e12720, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33523499

RESUMO

Appropriate synchronization of the timing of behaviors with the circadian clock and adequate sleep are both important for almost every physiological process. The timing of the circadian clock relative to social (ie, local) clock time and the timing of sleep can vary greatly among individuals. Whether the timing of these processes is stable within an individual is not well-understood. We examined the stability of circadian-controlled melatonin timing, sleep timing, and their interaction across ~ 100 days in 15 students at a single university. At three time points ~ 35-days apart, circadian timing was determined from the dim-light melatonin onset (DLMO). Sleep behaviors (timing and duration) and chronotype (ie, mid-sleep time on free days corrected for sleep loss on school/work days) were determined via actigraphy and analyzed in ~ 1-month bins. Melatonin timing was stable, with an almost perfect relationship strength as determined via intraclass correlation coefficients ([ICC]=0.85); average DLMO timing across all participants only changed from the first month by 21 minutes in month 2 and 5 minutes in month 3. Sleep behaviors also demonstrated high stability, with ICC relationship strengths ranging from substantial to almost perfect (ICCs = 0.65-0.85). Average DLMO was significantly associated with average chronotype (r2  = 0.53, P <.01), with chronotype displaying substantial stability across months (ICC = 0.61). These findings of a robust stability in melatonin timing and sleep behaviors in young adults living in real-world settings holds promise for a better understanding of the reliability of previous cross-sectional reports and for the future individualized strategies to combat circadian-associated disease and impaired safety (ie, "chronomedicine").


Assuntos
Ciclos de Atividade , Ritmo Circadiano , Melatonina/metabolismo , Sono , Estudantes , Adolescente , Fatores Etários , Biomarcadores/metabolismo , Feminino , Humanos , Masculino , Saliva/metabolismo , Fatores de Tempo , Adulto Jovem
3.
J Clin Endocrinol Metab ; 88(9): 4502-5, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12970330

RESUMO

The endogenous circadian oscillator in mammals, situated in the suprachiasmatic nuclei, receives environmental photic input from specialized subsets of photoreceptive retinal ganglion cells. The human circadian pacemaker is exquisitely sensitive to ocular light exposure, even in some people who are otherwise totally blind. The magnitude of the resetting response to white light depends on the timing, intensity, duration, number and pattern of exposures. We report here that the circadian resetting response in humans, as measured by the pineal melatonin rhythm, is also wavelength dependent. Exposure to 6.5 h of monochromatic light at 460 nm induces a two-fold greater circadian phase delay than 6.5 h of 555 nm monochromatic light of equal photon density. Similarly, 460 nm monochromatic light causes twice the amount of melatonin suppression compared to 555 nm monochromatic light, and is dependent on the duration of exposure in addition to wavelength. These studies demonstrate that the peak of sensitivity of the human circadian pacemaker to light is blue-shifted relative to the three-cone visual photopic system, the sensitivity of which peaks at approximately 555 nm. Thus photopic lux, the standard unit of illuminance, is inappropriate when quantifying the photic drive required to reset the human circadian pacemaker.


Assuntos
Ritmo Circadiano/efeitos da radiação , Luz , Melatonina/metabolismo , Adulto , Área Sob a Curva , Feminino , Humanos , Masculino , Glândula Pineal/metabolismo , Glândula Pineal/efeitos da radiação , Saliva/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA