Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 509(4): 1008-1014, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30654938

RESUMO

Tooth formation is accomplished under strict genetic programs. Although patients with chromosome 12q14 aberration shows tooth phenotype including the size and eruption timing with bone growth anomaly, its etiology is uncertain. Here, we examined expression of Hmga2, which is encoded at chromosome 12q14, in mouse tooth germs and analyzed the involvement in lower first molar (M1) and mandibular bone development. Hmga2 expression was immunohistochemically detected at enamel organ and the surrounding mesenchyme of the M1 germs. The expression was dynamically changed with gestation and rapidly decreased in postnatal mice. In Hmga2-/- mice, the M1 germs and crowns were diminished in size, and formation and eruption of molars were delayed with mandibular bone growth retardation. Hmga2 cDNA or siRNA transfection showed that Hmga2 transcriptionally up-regulates expression of stem cell factors, Sox2 and Nanog. They were co-localized with Hmga2 in the germs, but differentially distributed at enamel organ and mesenchyme in Hmga2-/- mice. These results demonstrate that Hmga2 expressed in tooth germs regulates the growth, sizing and eruption and stem cell factor expression in different compartment of the germ and associates with mandibular bone growth. Although future studies are needed, the present study demonstrates HMGA2 regulation of tooth genesis with skeletal development.


Assuntos
Proteína HMGA2/fisiologia , Proteína Homeobox Nanog/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Animais , Regulação da Expressão Gênica no Desenvolvimento , Proteína HMGA2/análise , Proteína HMGA2/metabolismo , Imuno-Histoquímica , Mandíbula/crescimento & desenvolvimento , Camundongos , Dente Molar/crescimento & desenvolvimento , Odontogênese/efeitos dos fármacos
2.
Front Cell Dev Biol ; 10: 883266, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35531096

RESUMO

Matrix-metalloproteinase-13 (MMP13) is important for bone formation and remodeling; however, its role in tooth development remains unknown. To investigate this, MMP13-knockout (Mmp13 -/- ) mice were used to analyze phenotypic changes in the dentin-pulp complex, mineralization-associated marker-expression, and mechanistic interactions. Immunohistochemistry demonstrated high MMP13-expression in pulp-tissue, ameloblasts, odontoblasts, and dentin in developing WT-molars, which reduced in adults, with human-DPC cultures demonstrating a >2000-fold increase in Mmp13-expression during mineralization. Morphologically, Mmp13 -/- molars displayed critical alterations in the dentin-phenotype, affecting dentin-tubule regularity, the odontoblast-palisade and predentin-definition with significantly reduced dentin volume (∼30% incisor; 13% molar), and enamel and dentin mineral-density. Reactionary-tertiary-dentin in response to injury was reduced at Mmp13 -/- molar cusp-tips but with significantly more dystrophic pulpal mineralization in MMP13-null samples. Odontoblast differentiation-markers, nestin and DSP, reduced in expression after MMP13-loss in vivo, with reduced calcium deposition in MMP13-null DPC cultures. RNA-sequencing analysis of WT and Mmp13 -/- pulp highlighted 5,020 transcripts to have significantly >2.0-fold change, with pathway-analysis indicating downregulation of the Wnt-signaling pathway, supported by reduced in vivo expression of the Wnt-responsive gene Axin2. Mmp13 interaction with Axin2 could be partly responsible for the loss of odontoblastic activity and alteration to the tooth phenotype and volume which is evident in this study. Overall, our novel findings indicate MMP13 as critical for tooth development and mineralization processes, highlighting mechanistic interaction with the Wnt-signaling pathway.

3.
PLoS One ; 16(9): e0257464, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34529736

RESUMO

Despite the development of effective vaccines against SARS-CoV-2, epidemiological control of the virus is still challenging due to slow vaccine rollouts, incomplete vaccine protection to current and emerging variants, and unwillingness to get vaccinated. Therefore, frequent testing of individuals to identify early SARS-CoV-2 infections, contact-tracing and isolation strategies remain crucial to mitigate viral spread. Here, we describe WHotLAMP, a rapid molecular test to detect SARS-CoV-2 in saliva. WHotLAMP is simple to use, highly sensitive (~4 viral particles per microliter of saliva) and specific, as well as inexpensive, making it ideal for frequent screening. Moreover, WHotLAMP does not require toxic chemicals or specialized equipment and thus can be performed in point-of-care settings, and may also be adapted for resource-limited environments or home use. While applied here to SARS-CoV-2, WHotLAMP can be modified to detect other pathogens, making it adaptable for other diagnostic assays, including for use in future outbreaks.


Assuntos
Teste de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , RNA Viral/genética , SARS-CoV-2/genética , Saliva/virologia , COVID-19/epidemiologia , COVID-19/virologia , Teste de Ácido Nucleico para COVID-19/instrumentação , Epidemias/prevenção & controle , Humanos , Sistemas Automatizados de Assistência Junto ao Leito/estatística & dados numéricos , RNA Viral/isolamento & purificação , Reprodutibilidade dos Testes , SARS-CoV-2/fisiologia , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA