Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 22(3): 1145-1150, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35089720

RESUMO

Molecular motors are pivotal for intracellular transport as well as cell motility and have great potential to be put to use outside cells. Here, we exploit engineered motor proteins in combination with self-assembly of actin filaments to actively pull lipid nanotubes from giant unilamellar vesicles (GUVs). In particular, actin filaments are bound to the outer GUV membrane and the GUVs are seeded on a heavy meromyosin-coated substrate. Upon addition of ATP, hollow lipid nanotubes with a length of tens of micrometer are pulled from single GUVs due to the motor activity. We employ the same mechanism to pull lipid nanotubes from different types of cells. We find that the length and number of nanotubes critically depends on the cell type, whereby suspension cells form bigger networks than adherent cells. This suggests that molecular machines can be used to exert forces on living cells to probe membrane-to-cortex attachment.


Assuntos
Actomiosina , Nanotubos , Citoesqueleto de Actina/metabolismo , Actomiosina/química , Actomiosina/metabolismo , Lipídeos/química , Nanotubos/química , Lipossomas Unilamelares/química
2.
J Biomed Opt ; 16(9): 095001, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21950910

RESUMO

Spatially confined and precise time delivery of neuroactive molecules is an important issue in neurophysiology. In this work we developed a technique for delivering chemical stimuli to cultured neurons consisting in encapsulating the molecules of interest in liposomes. These vectors were then loaded in reservoirs consisting of glass capillaries. The reservoirs were placed in the recording chamber and single liposomes were trapped and transported out by optical tweezers to the site of stimulation on cultured neurons. Finally, the release of liposome content was induced by application of UV-pulses, breaking the liposome membrane. The efficiency of encapsulation and release were first evaluated by loading the liposomes with fluorescein. In order to test the effect of the UV-induced release, liposomes with diameter ranging from 1 to 10 µm (fL to pL volumes), were filled with KCl and tested on neuronal cells. Neuronal cultures, loaded with Ca(2+) dye, were monitored by imaging intracellular Ca(2+). An efficient release from the liposomes was demonstrated by detectable calcium signals, indicating stimulated depolarization of the neuronal cells by KCl. The present technique represents an alternative method for focal chemical stimulation of cultured cells that circumvents some of the limitations of microejection and photorelease of caged compounds.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Lasers , Lipossomos/química , Neurônios/química , Pinças Ópticas , Animais , Cálcio , Células Cultivadas , Sistemas de Liberação de Medicamentos/instrumentação , Fluoresceína , Hipocampo/citologia , Neurônios/citologia , Tamanho da Partícula , Fotólise , Cloreto de Potássio , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA