Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Drug Dev Ind Pharm ; 43(7): 1126-1133, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28274133

RESUMO

The bioavailability of the anthelminthic flubendazole was remarkably enhanced in comparison with the pure crystalline drug by developing completely amorphous electrospun nanofibres with a matrix consisting of hydroxypropyl-ß-cyclodextrin and polyvinylpyrrolidone. The thus produced formulations can potentially be active against macrofilariae parasites causing tropical diseases, for example, river blindness and elephantiasis, which affect altogether more than a hundred million people worldwide. The bioavailability enhancement was based on the considerably improved dissolution. The release of a dose of 40 mg could be achieved within 15 min. Accordingly, administration of the nanofibrous system ensured an increased plasma concentration profile in rats in contrast to the practically non-absorbable crystalline flubendazole. Furthermore, easy-to-grind fibers could be developed, which enabled compression of easily administrable immediate release tablets.


Assuntos
Mebendazol/análogos & derivados , Nanofibras/química , Povidona/química , Comprimidos/química , beta-Ciclodextrinas/química , 2-Hidroxipropil-beta-Ciclodextrina , Administração Oral , Animais , Disponibilidade Biológica , Química Farmacêutica , Cristalização , Mebendazol/administração & dosagem , Mebendazol/química , Ratos
2.
Mol Pharm ; 13(11): 3816-3826, 2016 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-27611057

RESUMO

The aim of this study was to investigate the impact of formulation excipients and solubilizing additives on dissolution, supersaturation, and membrane transport of an active pharmaceutical ingredient (API). When a poorly water-soluble API is formulated to enhance its dissolution, additives, such as surfactants, polymers, and cyclodextrins, have an effect not only on dissolution profile but also on the measured physicochemical properties (solubility, pKa, permeability) of the drug while the excipient is present, therefore also affecting the driving force of membrane transport. Meloxicam, a nonsteroidal anti-inflammatory drug, was chosen as a poorly water-soluble model drug and formulated in order to enhance its dissolution using solvent-based electrospinning. Three polyvinylpyrrolidone (PVP) derivatives (K30, K90, and VA 64), Soluplus, and (2-hydroxypropyl)-ß-cyclodextrin were used to create five different amorphous solid dispersions of meloxicam. Through experimental design, the various formulation additives that could influence the characteristics of dissolution and permeation through artificial membrane were observed by carrying out a simultaneous dissolution-permeation study with a side-by-side diffusion cell, µFLUX. Although the dissolution profiles of the formulations were found to be very similar, in the case of Soluplus containing formulation the flux was superior, showing that the driving force of membrane transport cannot be simplified to the concentration gradient. Supersaturation gradient, the difference in degree of supersaturation (defined as the ratio of dissolved amount of the drug to its thermodynamic solubility) between the donor and acceptor side, was found to be the driving force of membrane transport. It was mathematically derived from Fick's first law, and experimentally proved to be universal on several meloxicam containing ASDs and DMSO stock solution.


Assuntos
Modelos Teóricos , Polímeros/química , Soluções/química , Dimetil Sulfóxido/química , Meloxicam , Estrutura Molecular , Nanofibras/química , Polietilenoglicóis/química , Polivinil/química , Povidona/química , Tiazinas/química , Tiazóis/química , beta-Ciclodextrinas/química
3.
Int J Pharm ; 664: 124650, 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39214433

RESUMO

Twin-screw wet granulation (TWSG) is a promising continuous alternative of pharmaceutical wet granulation. One of its benefits is that the components dissolved in the granulation liquid are distributed homogeneously in the granules. This provides an elegant way to manufacture products with ultralow drug doses. Near-infrared (NIR) and Raman spectroscopy are well-established process analytical technology (PAT) tools that can be used for the in-line monitoring of TSWG. However, their detection limit does not enable the measurement of components in the ultralow (i.e., ppm) range. In this paper, an indirect approach is presented that enables the real-time determination of the concentration of a drug in concentrations between 40 and 100 ppm by using the signal of an excipient, in this case, the polyvinylpyrrolidone (PVP). This component is also dissolved in the granulation liquid; therefore, it is distributed in the same way as the active ingredient. Results of HPLC measurements have proved that the models trained to quantify the concentration of PVP in real-time gave an accurate determination for the active ingredient as well (root mean squared error was 7.07 ppm for Raman and 5.31 ppm for NIR spectroscopy, respectively). These findings imply that it is possible to indirectly predict the concentration of ultralow dose drugs with in-line analytical techniques based on the concentration of an excipient.


Assuntos
Excipientes , Povidona , Espectroscopia de Luz Próxima ao Infravermelho , Análise Espectral Raman , Análise Espectral Raman/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Excipientes/química , Povidona/química , Tecnologia Farmacêutica/métodos , Composição de Medicamentos/métodos , Química Farmacêutica/métodos , Cromatografia Líquida de Alta Pressão/métodos
4.
Int J Pharm ; 567: 118464, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31252145

RESUMO

This work proposes the application of artificial neural networks (ANN) to non-destructively predict the in vitro dissolution of pharmaceutical tablets from Process Analytical Technology (PAT) data. An extended release tablet formulation was studied, where the dissolution was influenced by the composition of the tablets and the tableting compression force. NIR and Raman spectra of the intact tablets were measured, and the dissolution of the tablets was modeled directly from the spectral data. Partial Least Square (PLS) regression and ANN models were developed for the different spectroscopic measurements individually as well as by combining them together. ANN provided up to 3% lower root mean square error for prediction (RMSEP) than the PLS models, due to its capability of modeling non-linearity between the process parameters and dissolution curves. The ANN model using reflection NIR spectra provided the most accurate predictions with 6.5 and 63 mean f1 and f2 values between the computed and measured dissolution curves, respectively. Furthermore, ANN served as a straightforward data fusion method without the need for additional preprocessing steps. The method could significantly advance data processing in the PAT environment, contribute to an enhanced real-time release testing procedure and hence the increased efficacy of dissolution testing.


Assuntos
Liberação Controlada de Fármacos , Redes Neurais de Computação , Comprimidos/química , Cafeína/química , Celulose/química , Análise dos Mínimos Quadrados , Polietilenoglicóis/química , Espectroscopia de Luz Próxima ao Infravermelho , Análise Espectral Raman , Ácidos Esteáricos/química , Tecnologia Farmacêutica
5.
Int J Pharm ; 569: 118593, 2019 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-31398371

RESUMO

The objectives of this work were to develop meloxicam based amorphous solid dispersion through electrospinning technique and evaluate the effect of the polymeric matrix on the physicochemical properties of the fibers and the downstream processing ability to orodispersible dosage forms. Drug - polymer interactions formed between Eudragit E and meloxicam, confirmed through Raman and 1HNMR spectra, enabled the development of fibers from ethanol, thus allowing an increased production rate compared to PVPk30 where a DMF:THF solvent system was suitable. Microflux dissolution-permeation studies showed a significantly higher diffusion from amorphous solid dispersions compared to crystalline meloxicam. The flux through the membrane was influenced by the polymers only under basic conditions, where the precipitation of Eudragit E limited the complete resolubilization of the active ingredient. This phenomenon was not observed during large volume conventional dissolution testing. The effect of formulation on long term stability could not be highlighted as all products were stable up to 15 months, stored in closed holders at 25 °C ±â€¯2 °C and 50%RH ±â€¯10%. The increased surface area of fibers enabled tablet preparation with low pressures due to favorable bonding between particles during compression. PVPk30 formulation presented higher tabletability and compactability, as higher tensile strength compacts could be prepared. Eudragit E formulation had lower detachment and ejection stress, suggesting a lower sticking tendency during tableting. The presence of HPßCD in PVPk30 formulation offered improved morphological features of the fibers, however no significant effect was observed on dissolution, permeation or mechanical properties. Downstream processing was guided by polymer mechanical properties and solubility, thus PVPk30 fibers could be delivered in the form of orodispersible webs and conventional tablets, whereas Eudragit E fibers as orodispersible tablets.


Assuntos
Anti-Inflamatórios não Esteroides/química , Meloxicam/química , Composição de Medicamentos/métodos , Polímeros/química , Solubilidade , Comprimidos
6.
J Pharm Sci ; 106(6): 1634-1643, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28257818

RESUMO

Novel, high-yield alternating current electrospinning (ACES) and direct current electrospinning methods were investigated to prepare high-quality hydroxypropylmethylcellulose acetate succinate (HPMCAS) fibers for the dissolution enhancement of poorly soluble spironolactone. Although HPMCAS is of great pharmaceutical importance as a carrier of marketed solid dispersion-based products, it was found to be unprocessable using electrospinning. Addition of small amounts of polyethylene oxide as aid polymer provided smooth fibers with direct current electrospinning but strongly beaded products with ACES. Solution characteristics were thus modified by introducing further excipients. In the presence of sodium dodecyl sulfate, high-quality, HPMCAS-based fibers were obtained even at higher throughput rates of ACES owing to the change in conductivity (rather than surface tension). Replacement of sodium dodecyl sulfate with non-surface-active salts (calcium chloride and ammonium acetate) maintained the fine quality of nanofibers, confirming the importance of conductivity in ACES process. The HPMCAS-based fibers contained spironolactone in an amorphous form according to differential scanning calorimetry and X-ray powder diffraction. In vitro dissolution tests revealed fast drug release rates depending on the salt used to adjust conductivity. The presented results signify that ACES can be a prospective process for high-scale production of fibrous solid dispersions in which conductivity of solution has a fundamental role.


Assuntos
Portadores de Fármacos/química , Excipientes/química , Metilcelulose/análogos & derivados , Nanofibras/química , Liberação Controlada de Fármacos , Metilcelulose/química , Nanofibras/ultraestrutura , Polietilenoglicóis/química , Dodecilsulfato de Sódio/química , Solubilidade , Espironolactona/administração & dosagem , Espironolactona/química
7.
Int J Pharm ; 495(1): 75-80, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26320549

RESUMO

Alternating current electrospinning (ACES) was compared to direct current electrospinning (DCES) for the preparation of drug-loaded nanofibrous mats. It is generally considered that DCES is the solely technique to produce nanofibers using the electrostatic force from polymer solutions, however, less studied and also capable ACES provides further advantages such as increased specific productivities. A poorly water-soluble drug (carvedilol) was incorporated into the fibers based on three different polymeric matrices (an acid-soluble terpolymer (Eudragit(®) E), a base-soluble copolymer (Eudragit(®) L 100-55) and a nonionic homopolymer (polyvinylpyrrolidone K90)) to improve the dissolution of the weak base drug under different pH conditions. Morphology and fiber diameter evaluation showed similar electrospun fibers regardless the type of the high voltage and the major differences in feeding rates. The amorphous ACES and DCES fibers provided fast and total drug dissolutions in all cases. The presented results show that ACES can be a more feasible novel alternative to formulate fibers for drug delivery purposes.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Eletricidade , Nanofibras/química , Carbazóis/química , Carvedilol , Química Farmacêutica , Liberação Controlada de Fármacos , Fenômenos Físicos , Polímeros/química , Propanolaminas/química , Tecnologia Farmacêutica
8.
Int J Pharm ; 480(1-2): 137-42, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25596415

RESUMO

High speed electrospinning (HSES), compatible with pharmaceutical industry, was used to demonstrate the viability of the preparation of drug-loaded polymer nanofibers with radically higher productivity than the known single-needle electrospinning (SNES) setup. Poorly water-soluble itraconazole (ITRA) was formulated with PVPVA64 matrix polymer using four different solvent-based methods such as HSES, SNES, spray drying (SD) and film casting (FC). The formulations were assessed in terms of improvement in the dissolution rate of ITRA (using a "tapped basket" dissolution configuration) and analysed by SEM, DSC and XRPD. Despite the significantly increased productivity of HSES, the obtained morphology was very similar to the SNES nanofibrous material. ITRA transformed into an amorphous form, according to the DSC and XRPD results, in most cases except the FC samples. The limited dissolution of crystalline ITRA could be highly improved: fast dissolution occurred (>90% within 10min) in the cases of both (the scaled-up and the single-needle) types of electrospun fibers, while the improvement in the dissolution rate of the spray-dried microspheres was significantly lower. Production of amorphous solid dispersions (ASDs) with the HSES system proved to be flexibly scalable and easy to integrate into a continuous pharmaceutical manufacturing line, which opens new routes for the development of industrially relevant nanopharmaceuticals.


Assuntos
Itraconazol/administração & dosagem , Nanofibras , Polímeros/química , Tecnologia Farmacêutica/métodos , Antifúngicos/administração & dosagem , Antifúngicos/química , Varredura Diferencial de Calorimetria , Química Farmacêutica/métodos , Cristalização , Indústria Farmacêutica/métodos , Itraconazol/química , Microesferas , Solubilidade , Solventes/química , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA