Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 10(10)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34680764

RESUMO

Current endodontic procedures continue to be unsuccessful for completely removing pathogens present inside the root canal system, which can lead to recurrent infections. In this study, we aimed to assess the antimicrobial capacity and tissue response of two inorganic bactericidal additives incorporated into a paste root canal sealer on contaminated root dentin in vivo. An experimental study was performed in 30 teeth of five Beagle dogs. After inducing microbiological contamination, root canal systems were treated by randomly incorporating one of two antimicrobial additives into a commercial epoxy-amine resin sealer (AH Plus), i.e., G3T glass-ceramic (n = 10) and ZnO-enriched glass (n = 10); 10 samples were randomized as a control group. After having sacrificed the animals, microbiological, radiological, and histological analyses were performed, which were complemented with an in vitro bactericidal test and characterization by field emission scanning electron microscopy. The tested groups demonstrated a non-significant microbiological reduction in the postmortem periapical index values between the control group and the bactericidal glass-ceramic group (p = 0.885), and between the control group and the ZnO-enriched glass group (p = 0.169). The histological results showed low values of inflammatory infiltrate, and a healing pattern characterized by fibrosis in 44.4% of the G3T glass-ceramic and 60.0% of ZnO-enriched glass. Bactericidal glassy additives incorporated in this root canal sealer are safe and effective in bacterial reduction.

2.
Biomaterials ; 29(27): 3636-3641, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18571716

RESUMO

Mechanical properties and slow crack growth (SCG) behavior of a 10Ce-TZP/Al2O3 nanocomposite currently developed as a biomaterial are considered. Fracture toughness is determined for sharp, long (double torsion) and short (indentation) cracks and a good agreement is found between the two types of cracks. The main toughening mechanism in the nanocomposite is the tetragonal to monoclinic phase transformation of the ceria-stabilized zirconia (Ce-TZP) phase. Transformation at the surface of ground specimens leads to surface compressive induced stresses and an increase in strength. Crack velocity curves (V-K(I) curves) are obtained under static and cyclic fatigue using the double torsion method. The static V-K(I) curve in air reveals the three stages characteristic of stress corrosion with a threshold K(I0) approximately 4.5 MPa m(1/2) and a fracture toughness of 8.8 MPa m(1/2) significantly higher than those of currently used inert bioceramics (i.e., alumina and Y-TZP). A crack growth accelerating effect is shown under cyclic loading, correlated with a decrease in the threshold. However, the cyclic fatigue threshold (4 MPa m(1/2)) still stands above that of current biomedical grade alumina and zirconia.


Assuntos
Alumínio/química , Materiais Biocompatíveis , Cério/química , Nanocompostos , Zircônio/química , Teste de Materiais , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA