Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Adv Mater ; 31(41): e1904113, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31456222

RESUMO

Excessive sweat secreted from the skin often causes undesired adhesion from wetted textiles and cold sensations. Traditional hydrophilic textiles such as cotton can absorb sweat but retain it. A hydrophobic/superhydrophilic Janus polyester/nitrocellulose textile embedded with a conical micropore array with a hydrophilic inner surface that can achieve directional liquid transport (with an ultrahigh directional water transport capability of 1246%) and maintain human body temperature (2-3 °C higher than with cotton textiles) is demonstrated. When the hydrophobic polyester layer with large opening of hydrophilic conical micropores contacts the liquid, the Janus polyester/nitrocellulose textile can pump it to the superhydrophilic nitrocellulose layer through the hydrophilic conical micropores driven by capillary force. The Janus polyester/nitrocellulose textile can weaken undesired wet adhesion and heat loss due to the removal of liquid. The water wicking and air permeability of the Janus polyester/nitrocellulose textile is comparable to those of traditional cloths. This study is valuable for designing of functional textiles with directional water transport properties for personal drying and warming applications.


Assuntos
Biomimética/instrumentação , Suor , Temperatura , Têxteis , Colódio/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Poliésteres/química , Porosidade
2.
ACS Appl Mater Interfaces ; 10(49): 42979-42984, 2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30380294

RESUMO

Inspired by natural ciliary movement, artificial cilia systems have recently been developed to transport microparticles and target biomolecules by the external stimuli-induced bend and twist. However, the directional transportation of cargo meets a major challenge. Here, we present an artificial asymmetric cilia array of dielectric elastomer and realize the cargo directional transportation under alternating-current (ac) electric field. Such a dielectric elastomer is composed of elastomer matrix and dielectric barium titanate (BaTiO3) nanoparticles, which can be polarized under an ac electric field and results in the swinging of artificial elastomer cilia. The asymmetry of the cilia endows themselves with the capability of asymmetric recovery stroke, which is essential for directional transportation of cargo. Transporting performance is also optimized by adjusting the applied frequencies and voltages. This study may provide a new clue to construct functional "smart" devices in electromechanical systems and biomedicine.


Assuntos
Compostos de Bário , Cílios , Elastômeros , Movimento , Nanopartículas , Titânio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA