Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biochemistry ; 60(13): 1019-1030, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33169977

RESUMO

Designing nanoparticles (NPs) with desirable cell type-specific exocytosis properties, say promoting their exocytosis from scavenging cell types (e.g., macrophages and endothelial cells) or suppressing their exocytosis from target disease cell types (e.g., cancer cells), improves the application of nanomedicines. However, the design parameters available for tuning the exocytosis of NPs remain scarce in the "nano-cell" literature. Here, we demonstrate that surface modification of NPs with hydrocarbyl functional groups, commonly found in biomolecules and NP-based drug carriers, is a critical parameter for tuning the exocytosis of NPs from RAW264.7 macrophages, C166 endothelial cells, and HeLa epithelial cancer cells. To exclude the effect of hydrophobicity, we prepare a collection of hydrophilic NPs that bear a gold NP (AuNP) core, a dense polyethylene glycol (PEG) shell, and different types of hydrocarbyl groups (X) that are attached to the distal end of the PEG strands (termed "Au@PEG-X NPs"). For all three cell types tested, modification of NPs with straight-chain dodecane leads to a >10-fold increase in the level of cellular uptake, drastically higher than those of all other types of X tested. However, the probability of exocytosis of NPs significantly depends on the types of cell and X. Notably, NPs modified with cyclododecanes are most likely to be exocytosed by RAW264.7 and C166 cells (but not HeLa cells), accompanied by the release of intralumenal vesicles to the extracellular milieu. These data suggest a reductionist approach for rationally assembling bionanomaterials for nanomedicine applications by using hydrocarbyl functional groups as building blocks.


Assuntos
Exocitose , Nanopartículas/química , Animais , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Células Endoteliais/metabolismo , Ouro/química , Células HeLa , Humanos , Nanopartículas Metálicas/química , Camundongos , Tamanho da Partícula , Polietilenoglicóis/química , Células RAW 264.7 , Propriedades de Superfície
2.
Biomater Sci ; 10(1): 189-201, 2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34817474

RESUMO

A series of glutathione (GSH)-responsive polydopamine (PDA) nanoparticles (NPs) were prepared using a disulfide-linked dopamine dimer as starting material, of which the size could be tuned systematically by adjusting the amount of ammonia solution used. Molecules of a phthalocyanine (Pc)-based photosensitiser and an epidermal growth factor receptor (EGFR)-targeting peptide were then sequentially immobilised on the surface of the NPs through coupling with the surface functionalities of PDA. The immobilised Pc molecules in the resulting nanosystem were photodynamically inactive due to the strong self-quenching effect and the quenching by the PDA core. Upon exposure to GSH in phosphate-buffered saline or EGFR-positive cancer cells, namely A549 and A431 cells, the NPs were disassembled through cleavage of the disulfide linkages to release the Pc molecules, thereby restoring their fluorescence emission and singlet oxygen generation. The NPs with the smallest size (ca. 200 nm in diameter) exhibited the highest cellular uptake and high photocytotoxicity with IC50 values as low as 0.05 µM based on Pc. These NPs could also accumulate and be activated in the tumour of A431 tumour-bearing nude mice, lighting up the tumour with fluorescence over a period of 72 h and completely eradicating the tumour through laser irradiation for 10 min (675 nm, 20 J cm-2). The results suggest that these biodegradable and versatile PDA-based NPs can serve as a promising nanoplatform for fabrication of advanced photosensitisers for targeted photodynamic therapy.


Assuntos
Antineoplásicos/farmacologia , Nanopartículas , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Animais , Linhagem Celular Tumoral , Glutationa , Indóis , Camundongos , Camundongos Nus , Polímeros
3.
Nanoscale ; 13(37): 15899-15915, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34522935

RESUMO

A thioketal-linked dimer of 3,4-dihydroxy-L-phenylalanine was prepared which underwent self-polymerisation in the presence of doxorubicin (Dox) in an ethanol/water (1 : 4, v/v) mixture with ammonia. The resulting Dox-encapsulated polydopamine (PDA) nanoparticles were further conjugated with molecules of a zinc(II) phthalocyanine (Pc)-based photosensitiser and a peptide containing the heptapeptide QRHKPRE sequence (labelled as QRH) that can target the epidermal growth factor receptor (EGFR) overexpressed in cancer cells. Upon internalisation into these cells through receptor-mediated endocytosis, these nanoparticles labelled as PDA-Dox-Pc-QRH were disassembled gradually via cleavage of the thioketal linkages by the intrinsic intracellular reactive oxygen species (ROS). The stacked Pc molecules were then disaggregated, resulting in activation of their photosensitising property upon irradiation. The ROS generated by the activated Pc promoted further degradation of the nanoparticles and release of Dox, thereby enhancing cell death by synergistic chemo and photodynamic therapy. Systemic injection of PDA-Dox-Pc-QRH into EGFR-overexpressed tumour-bearing nude mice led to targeted delivery to the tumour, and subsequent light irradiation caused complete tumour ablation without inducing notable toxicity.


Assuntos
Nanopartículas , Fotoquimioterapia , Animais , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Indóis , Camundongos , Camundongos Nus , Polímeros , Espécies Reativas de Oxigênio
4.
Nanoscale ; 13(13): 6499-6512, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33885529

RESUMO

A novel nanosystem of polydopamine-coated gold nanorods (AuNR@PDA) immobilised with molecules of hairpin DNA-conjugated distyryl boron dipyrromethene (DSBDP) was designed and fabricated for detection of microRNA-21 (miR-21). By using this oncogenic stimulus, the photodynamic effect of the DSBDP-based photosensitiser was also activated. In the presence of miR-21, the fluorescence intensity of the nanosystem was increased due to the dissociation of the conjugate from AuNR@PDA upon hybridisation. The intracellular fluorescence intensity triggered by intracellular miR-21 was in the order: MCF-7 > HeLa > HEK-293, which was in accordance with their miR-21 expression levels. The specificity was demonstrated by comparing the results with those of an analogue with a scrambled DNA sequence. The nanosystem could also result in miR-21-mediated photodynamic eradication of miR-21-overexpressed MCF-7 cells. After intravenous injection of the nanosystem into HeLa tumour-bearing nude mice, the fluorescence intensity of the tumour was increased over 24 h and was about 3-fold stronger than that of the scrambled analogue. Upon irradiation, the nanosystem could also greatly reduce the size of the tumour without causing significant tissue damage in the major organs. The overall results showed that this nanoplatform can serve as a specific and potent theranostic agent for simultaneous miR-21 detection and miR-21-mediated photodynamic therapy.


Assuntos
MicroRNAs , Nanotubos , Fotoquimioterapia , Animais , Boro , DNA , Ouro , Células HEK293 , Humanos , Indóis , Camundongos , Camundongos Nus , MicroRNAs/genética , Polímeros , Porfobilinogênio/análogos & derivados
5.
Biofabrication ; 8(2): 025004, 2016 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-27108617

RESUMO

The fabrication of alginate hydrogel in 3D has recently received increasing attention owing to its distinct efficacy as biocompatible scaffold for 3D cell culture, biomedical and tissue engineering. We report a controllable 3D alginate hydrogel patterning method by developing a visible-light induced electrodeposition chip. The chip mainly consists of a photoconductive titanyl phthalocyanine (TiOPc) anode plate, an indium tin oxide (ITO) cathode plate and the mixed solution (1% sodium alginate and 0.25% CaCO3 nano particles) between them. After a designed visible-light pattern is projected onto the TiOPc plate, the produced H(+) by electrolysis will trigger Ca(2+) near the anode (illuminated area), and then the gelation of calcium alginate patterns, as desired, happens controllably. In addition, we further establish an exponential model to elucidate the gel growth v.s. time and current density. The results indicate that the proposed method is able to fabricate various 3D alginate hydrogel patterns in a well controllable manner, and maintain the laden cells at high survival rate (>98% right after gel formation). This research paves an alternative way for 3D alginate hydrogel patterning with high controllability and productivity, which would benefit the research in biomedical and tissue engineering.


Assuntos
Alginatos/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Engenharia Tecidual/instrumentação , Alicerces Teciduais/química , Materiais Biocompatíveis/química , Linhagem Celular , Sobrevivência Celular , Células/citologia , Galvanoplastia , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Humanos , Luz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA