Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biomacromolecules ; 25(2): 564-589, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38174643

RESUMO

As a biodegradable and biocompatible protein derived from collagen, gelatin has been extensively exploited as a fundamental component of biological scaffolds and drug delivery systems for precise medicine. The easily engineered gelatin holds great promise in formulating various delivery systems to protect and enhance the efficacy of drugs for improving the safety and effectiveness of numerous pharmaceuticals. The remarkable biocompatibility and adjustable mechanical properties of gelatin permit the construction of active 3D scaffolds to accelerate the regeneration of injured tissues and organs. In this Review, we delve into diverse strategies for fabricating and functionalizing gelatin-based structures, which are applicable to gene and drug delivery as well as tissue engineering. We emphasized the advantages of various gelatin derivatives, including methacryloyl gelatin, polyethylene glycol-modified gelatin, thiolated gelatin, and alendronate-modified gelatin. These derivatives exhibit excellent physicochemical and biological properties, allowing the fabrication of tailor-made structures for biomedical applications. Additionally, we explored the latest developments in the modulation of their physicochemical properties by combining additive materials and manufacturing platforms, outlining the design of multifunctional gelatin-based micro-, nano-, and macrostructures. While discussing the current limitations, we also addressed the challenges that need to be overcome for clinical translation, including high manufacturing costs, limited application scenarios, and potential immunogenicity. This Review provides insight into how the structural and chemical engineering of gelatin can be leveraged to pave the way for significant advancements in biomedical applications and the improvement of patient outcomes.


Assuntos
Gelatina , Alicerces Teciduais , Humanos , Gelatina/química , Alicerces Teciduais/química , Engenharia Tecidual , Colágeno , Polietilenoglicóis , Materiais Biocompatíveis/química
2.
Int J Biol Macromol ; 260(Pt 1): 129251, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38211908

RESUMO

Reactive oxygen species (ROS) play an important role in biological milieu. Recently, the rapid growth in our understanding of ROS and their promise in antibacterial applications has generated tremendous interest in the combination of ROS generators with bulk hydrogels. Hydrogels represent promising supporters for ROS generators and can locally confine the nanoscale distribution of ROS generators whilst also promoting cellular integration via biomaterial-cell interactions. This review highlights recent efforts and progress in developing hydrogels derived from biological macromolecules with embedded ROS generators with a focus on antimicrobial applications. Initially, an overview of passive and active antibacterial hydrogels is provided to show the significance of proper hydrogel selection and design. These are followed by an in-depth discussion of the various approaches for ROS generation in hydrogels. The structural engineering and fabrication of ROS-laden hydrogels are given with a focus on their biomedical applications in therapeutics and diagnosis. Additionally, we discuss how a compromise needs to be sought between ROS generation and removal for maximizing the efficacy of therapeutic treatment. Finally, the current challenges and potential routes toward commercialization in this rapidly evolving field are discussed, focusing on the potential translation of laboratory research outcomes to real-world clinical outcomes.


Assuntos
Anti-Infecciosos , Hidrogéis , Hidrogéis/farmacologia , Hidrogéis/química , Espécies Reativas de Oxigênio , Polímeros/química , Antibacterianos
3.
Adv Healthc Mater ; 13(23): e2400830, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38857527

RESUMO

Compromises between enhanced on-targeting reactivity and precise real-time monitoring in the tumor microenvironment (TME) are the main roadblocks for catalytic cancer therapy. The hallmark of a high level of hydrogen peroxide (H2O2) and acidic extracellular environment of the hypoxia solid tumor can underpin therapeutic and tracking performance. Herein, this work provides an activatable wintersweet-like nanohybrid consisting of titanium (Ti) doped cerium vanadate nanorods with the modification of polypyrrole (PPy) nanoparticles (CeVO4-Ti@PPy) for combinatorial therapies of breast carcinoma. The Ti dopants in the size-controllable CeVO4 nanorods lower the energy barrier (0.5 eV) of the rate-determining steps and elaborate peroxidase-like (POD-like) activities to improve the generation of toxic hydroxyl radical (·OH) according to the density functional theory (DFT) calculation. The multiple enzyme-like activities, including the intrinsic glutathione peroxidase (GPx) and catalase (CAT), achieve a record-high therapeutic efficiency. Coupling this oxidative stress with the photothermal effects of PPy enables enhanced catalytic tumor necrosis. The exterior PPy heterogeneous structure can be further doped with protons in the local acidic environment to intensify photoacoustic signals, allowing the non-invasive accurate tracking of tumors. The theranostic performance displayed negligible attenuated signals in near-infrared (NIR) windows. This organic-inorganic nanohybrid with a heterogeneous structure provides the potential to improve the overall outcomes of catalytic therapy.


Assuntos
Cério , Polímeros , Pirróis , Titânio , Vanadatos , Pirróis/química , Vanadatos/química , Polímeros/química , Cério/química , Titânio/química , Feminino , Animais , Humanos , Camundongos , Nanomedicina Teranóstica/métodos , Linhagem Celular Tumoral , Microambiente Tumoral/efeitos dos fármacos , Peróxido de Hidrogênio/química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA