Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomacromolecules ; 20(9): 3592-3600, 2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31448896

RESUMO

Drug carriers typically require both stealth and targeting properties to minimize nonspecific interactions with healthy cells and increase specific interaction with diseased cells. Herein, the assembly of targeted poly(ethylene glycol) (PEG) particles functionalized with cyclic peptides containing Arg-Gly-Asp (RGD) (ligand) using a mesoporous silica templating method is reported. The influence of PEG molecular weight, ligand-to-PEG molecule ratio, and particle size on cancer cell targeting to balance stealth and targeting of the engineered PEG particles is investigated. RGD-functionalized PEG particles (PEG-RGD particles) efficiently target U-87 MG cancer cells under static and flow conditions in vitro, whereas PEG and cyclic peptides containing Arg-Asp-Gly (RDG)-functionalized PEG (PEG-RDG) particles display negligible interaction with the same cells. Increasing the ligand-to-PEG molecule ratio improves cell targeting. In addition, the targeted PEG-RGD particles improve cell uptake via receptor-mediated endocytosis, which is desirable for intracellular drug delivery. The PEG-RGD particles show improved tumor targeting (14% ID g-1) when compared with the PEG (3% ID g-1) and PEG-RDG (7% ID g-1) particles in vivo, although the PEG-RGD particles show comparatively higher spleen and liver accumulation. The targeted PEG particles represent a platform for developing particles aimed at balancing nonspecific and specific interactions in biological systems.


Assuntos
Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Oligopeptídeos/farmacologia , Polietilenoglicóis/farmacologia , Animais , Linhagem Celular Tumoral , Citoplasma/efeitos dos fármacos , Endocitose/efeitos dos fármacos , Humanos , Ligantes , Oligopeptídeos/química , Polietilenoglicóis/química , Transdução de Sinais/efeitos dos fármacos , Dióxido de Silício/química , Dióxido de Silício/farmacologia , Propriedades de Superfície
2.
J Control Release ; 307: 355-367, 2019 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-31247281

RESUMO

Nanoengineering has the potential to revolutionize medicine by designing drug delivery systems that are both efficacious and highly selective. Determination of the affinity between cell lines and nanoparticles is thus of central importance, both to enable comparison of particles and to facilitate prediction of in vivo response. Attempts to compare particle performance can be dominated by experimental artifacts (including settling effects) or variability in experimental protocol. Instead, qualitative methods are generally used, limiting the reusability of many studies. Herein, we introduce a mathematical model-based approach to quantify the affinity between a cell-particle pairing, independent of the aforementioned confounding artifacts. The analysis presented can serve as a quantitative metric of the stealth, fouling, and targeting performance of nanoengineered particles in vitro. We validate this approach using a newly created in vitro dataset, consisting of seven different disulfide-stabilized poly(methacrylic acid) particles ranging from ~100 to 1000 nm in diameter that were incubated with three different cell lines (HeLa, THP-1, and RAW 264.7). We further expanded this dataset through the inclusion of previously published data and use it to determine which of five mathematical models best describe cell-particle association. We subsequently use this model to perform a quantitative comparison of cell-particle association for cell-particle pairings in our dataset. This analysis reveals a more complex cell-particle association relationship than a simplistic interpretation of the data, which erroneously assigns high affinity for all cell lines examined to large particles. Finally, we provide an online tool (http://bionano.xyz/estimator), which allows other researchers to easily apply this modeling approach to their experimental results.


Assuntos
Modelos Teóricos , Nanopartículas/administração & dosagem , Animais , Dissulfetos/administração & dosagem , Dissulfetos/química , Ouro/administração & dosagem , Ouro/química , Células HeLa , Humanos , Camundongos , Nanopartículas/química , Tamanho da Partícula , Ácidos Polimetacrílicos/administração & dosagem , Ácidos Polimetacrílicos/química , Células RAW 264.7 , Dióxido de Silício/administração & dosagem , Dióxido de Silício/química , Células THP-1
3.
Adv Healthc Mater ; 8(9): e1801607, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30868751

RESUMO

Low-fouling or "stealth" particles composed of poly(ethylene glycol) (PEG) display a striking ability to evade phagocytic cell uptake. However, functionalizing them for specific targeting is challenging. To address this challenge, stealth PEG particles prepared by a mesoporous silica templating method are functionalized with bispecific antibodies (BsAbs) to obtain PEG-BsAb particles via a one-step binding strategy for cell and tumor targeting. The dual specificity of the BsAbs-one arm binds to the PEG particles while the other targets a cell antigen (epidermal growth factor receptor, EGFR)-is exploited to modulate the number of targeting ligands per particle. Increasing the BsAb incubation concentration increases the amount of BsAb tethered to the PEG particles and enhances targeting and internalization into breast cancer cells overexpressing EGFR. The degree of BsAb functionalization does not significantly reduce the stealth properties of the PEG particles ex vivo, as assessed by their interactions with primary human blood granulocytes and monocytes. Although increasing the BsAb amount on PEG particles does not lead to the expected improvement in tumor accumulation in vivo, BsAb functionalization facilitates tumor cell uptake of PEG particles. This work highlights strategies to balance evading nonspecific clearance pathways, while improving tumor targeting and accumulation.


Assuntos
Anticorpos Biespecíficos/química , Sistemas de Liberação de Medicamentos/métodos , Polietilenoglicóis/química , Animais , Células CHO , Linhagem Celular Tumoral , Cricetulus , Receptores ErbB/química , Humanos
4.
ACS Nano ; 9(3): 2876-85, 2015 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-25712076

RESUMO

Engineered particles adsorb biomolecules (e.g., proteins) when introduced in a biological medium to form a layer called a "corona". Coronas, in particular the protein corona, play an important role in determining the surface properties of particles and their targeting abilities. This study examines the influence of protein coronas on the targeting ability of layer-by-layer (LbL)-assembled polymer capsules and core-shell particles functionalized with monoclonal antibodies. Upon exposure of humanized A33 monoclonal antibody (huA33 mAb)-functionalized poly(methacrylic acid) (PMA) capsules or huA33 mAb-PMA particles to human serum, a total of 83 or 65 proteins were identified in the protein coronas, respectively. Human serum of varying concentrations altered the composition of the protein corona. The antibody-driven specific cell membrane binding was qualitatively and quantitatively assessed by flow cytometry and fluorescence microscopy in both the absence and presence of a protein corona. The findings show that although different protein coronas formed in human serum (at different concentrations), the targeting ability of both the huA33 mAb-functionalized PMA capsules and particles toward human colon cancer cells was retained, demonstrating no significant difference compared with capsules and particles in the absence of protein coronas: ∼70% and ∼90% A33-expressing cells were targeted by the huA33 mAb-PMA capsules and particles, respectively, in a mixed cell population. This result demonstrates that the formation of protein coronas did not significantly influence the targeting ability of antibody-functionalized LbL-polymer carriers, indicating that the surface functionality of engineered particles in the presence of protein coronas can be preserved.


Assuntos
Anticorpos Monoclonais Humanizados/química , Portadores de Fármacos/química , Coroa de Proteína/química , Adsorção , Anticorpos Monoclonais Humanizados/imunologia , Proteínas Sanguíneas/química , Linhagem Celular Tumoral , Neoplasias do Colo/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Glicoproteínas de Membrana/imunologia , Glicoproteínas de Membrana/metabolismo , Modelos Moleculares , Ácidos Polimetacrílicos/química , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA