Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; 39(8): e1700767, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29411475

RESUMO

The incorporation of robust porous frameworks into polymer fibers with handleable morphologies and flexible chemical compositions exhibits significant advantages for device fabrication in a wide range of applications. However, the soft linear polymeric chains of the fibers make the generation of nanopores extremely challenging. Herein, a facile synthetic strategy based on a combination of functional monomer grafting and hyper-crosslinking technology is developed for the porous engineering of polymeric fibers. In this methodology, the nanoporous framework originating from the hyper-crosslinking of aromatic monomers is covalently grafted onto fibers, which is beneficial to retaining their unique fiber morphology and to preserving their excellent mechanical properties. Moreover, this promising protocol can be further extended to the porous functionalization of polymeric matrices with diverse morphologies for target-specific applications.


Assuntos
Polímeros/química , Nanoporos , Porosidade
2.
Biotechnol Bioeng ; 114(1): 217-231, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27477393

RESUMO

Mimicking the zonal organization of native articular cartilage, which is essential for proper tissue functions, has remained a challenge. In this study, a thermoresponsive copolymer of chitosan-g-poly(N-isopropylacrylamide) (CS-g-PNIPAAm) was synthesized as a carrier of mesenchymal stem cells (MSCs) to provide a support for their proliferation and differentiation. Microengineered three-dimensional (3D) cell-laden CS-g-PNIPAAm hydrogels with different microstripe widths were fabricated to control cellular alignment and elongation in order to mimic the superficial zone of natural cartilage. Biochemical assays showed six- and sevenfold increment in secretion of glycosaminoglycans (GAGs) and total collagen from MSCs encapsulated within the synthesized hydrogel after 28 days incubation in chondrogenic medium. Chondrogenic differentiation was also verified qualitatively by histological and immunohistochemical assessments. It was found that 75 ± 6% of cells encapsulated within 50 µm wide microstripes were aligned with an aspect ratio of 2.07 ± 0.16 at day 5, which was more organized than those observed in unpatterned constructs (12 ± 7% alignment and a shape index of 1.20 ± 0.07). The microengineered constructs mimicked the cell shape and organization in the superficial zone of cartilage whiles the unpatterned one resembled the middle zone. Our results suggest that microfabrication of 3D cell-laden thermosensitive hydrogels is a promising platform for creating biomimetic structures leading to more successful multi-zonal cartilage tissue engineering. Biotechnol. Bioeng. 2017;114: 217-231. © 2016 Wiley Periodicals, Inc.


Assuntos
Materiais Biocompatíveis/química , Cartilagem/citologia , Hidrogéis/química , Engenharia Tecidual/métodos , Resinas Acrílicas/química , Animais , Diferenciação Celular , Células Cultivadas , Quitosana/análogos & derivados , Quitosana/química , Células-Tronco Mesenquimais/citologia , Camundongos , Microtecnologia , Propriedades de Superfície , Temperatura
3.
Zhongguo Zhong Yao Za Zhi ; 41(3): 421-426, 2016 Feb.
Artigo em Zh | MEDLINE | ID: mdl-28868857

RESUMO

To establish a fast detection method during the purifying process of the extracts from Grardeniae using macroporous resin based on near infrared spectroscopy. First, the ethanol eluent was collected from the purification process of small size sample; and near infrared (NIR) spectrum was collected. Then the content of the geniposide was determined by HPLC method, and partial least squares (PLS) method was used to establish the quantitative model to predict the content of geniposide by NIR spectrum. This model was used to supervise the changes of geniposide concentrations in ethanol eluent during medium scale process. Experimental results showed that the NIR small scale model can accurately predict the concentrations of geniposide in the production process of medium scale. However, with the proceeding of batch processes, the prediction performance of the model was decreased, so model updating method was employed to maintain the model. After twice updates, the NIR quantitative model can accurately predict the concentrations of the geniposide during medium scale process. Therefore, through model updates, the established NIR quantitative model can be applied in different scales of macroporous resin purification processes, to improve the data utilization efficiency of small scale process and save the cost of rebuilding the quantitative model of medium scale.


Assuntos
Medicamentos de Ervas Chinesas/análise , Medicamentos de Ervas Chinesas/isolamento & purificação , Iridoides/análise , Iridoides/isolamento & purificação , Rubiaceae/química , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Cromatografia Líquida de Alta Pressão , Porosidade , Resinas Sintéticas/química
4.
Langmuir ; 31(42): 11419-27, 2015 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-26439894

RESUMO

Curcumin-encapsulated polyester nanoparticles (Cur-polyester NPs) of approximately 100 nm diameter with a negatively charged surface were prepared using a one-step nanoprecipitation method. The Cur-polyester NPs were prepared using polylactic acid, poly(D,L-lactic-co-glycolic acid) and poly(ϵ-caprolactone) without any emulsifier or surfactant. The encapsulation of curcumin in these polyester NPs greatly suppresses curcumin degradation in the aqueous environment due to its segregation from water. In addition, the fluorescence of curcumin in polyester NPs has a quantum yield of 4 to 5%, which is higher than that of curcumin in micellar systems and comparable to those in organic solvents, further supporting the idea that the polyester NPs are capable of excluding water from curcumin. Furthermore, the results from femtosecond fluorescence upconversion spectroscopy reveal that there is a decrease in the signal amplitude corresponding to solvent reorganization of excited state curcumin in the polyester NPs compared with curcumin in micellar systems. The Cur-polyester NPs also show a lack of deuterium isotope effect in the fluorescence lifetime. These results indicate that the interaction between curcumin and water in the polyester NPs is significantly weaker than that in micelles. Therefore, the aqueous stability of curcumin is greatly improved due to highly effective segregation from water. The overall outcome suggests that the polyester NPs prepared using the method reported herein are an attractive system for encapsulating and stabilizing curcumin in the aqueous environment.


Assuntos
Curcumina/química , Ácido Láctico/química , Nanopartículas/química , Poliésteres/química , Polímeros/química , Micelas
5.
Langmuir ; 31(34): 9356-65, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26256038

RESUMO

Polymeric amines such as poly(ethylenimine) (PEI) supported on mesoporous oxides are promising candidate adsorbents for CO2 capture processes. An important aspect to the design and optimization of these materials is a fundamental understanding of how the properties of the oxide support such as pore structure, particle morphology, and surface properties affect the efficiency of the guest polymer in its interactions with CO2. Previously, the efficiency of impregnated PEI to adsorb CO2 was shown to increase upon the addition of Zr as a surface modifier in SBA-15. However, the efficacy of this method to tune the adsorption performance has not been explored in materials of differing textural and morphological nature. Here, these issues are directly addressed via the preparation of an array of SBA-15 support materials with varying textural and morphological properties, as well as varying content of zirconium doped into the material. Zirconium is incorporated into the SBA-15 either during the synthesis of the SBA-15, or postsynthetically via deposition of Zr species onto pure-silica SBA-15. The method of Zr incorporation alters the textural and morphological properties of the parent SBA-15 in different ways. Importantly, the CO2 capacity of SBA-15 impregnated with PEI increases by a maximum of ∼60% with the quantity of doped Zr for a "standard" SBA-15 containing significant microporosity, while no increase in the CO2 capacity is observed upon Zr incorporation for an SBA-15 with reduced microporosity and a larger pore size, pore volume, and particle size. Finally, adsorbents supported on SBA-15 with controlled particle morphology show only modest increases in CO2 capacity upon inclusion of Zr to the silica framework. The data demonstrate that the textural and morphological properties of the support have a more significant impact on the ability of PEI to capture CO2 than the support surface composition.


Assuntos
Dióxido de Carbono/química , Polietilenoimina/química , Dióxido de Silício/química , Zircônio/química , Adsorção , Dióxido de Silício/síntese química , Propriedades de Superfície
6.
Angew Chem Int Ed Engl ; 54(2): 588-93, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25393650

RESUMO

The synthesis of highly nitrogen-doped mesoporous carbon spheres (NMCS) is reported. The large pores of the NMCS were obtained through self-polymerization of dopamine (DA) and spontaneous co-assembly of diblock copolymer micelles. The resultant narrowly dispersed NMCS possess large mesopores (ca. 16 nm) and small particle sizes (ca. 200 nm). The large pores and small dimensions of the N-heteroatom-doped carbon spheres contribute to the mass transportation by reducing and smoothing the diffusion pathways, leading to high electrocatalytic activity.


Assuntos
Carbono/química , Micelas , Nitrogênio/química , Polímeros/química , Microscopia Eletrônica de Varredura
7.
Small ; 10(12): 2382-9, 2014 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-24596304

RESUMO

Ultrathin graphitic carbon nitride (g-C3N4) nanosheets, due to their interesting two-dimensional graphene-like structure and unique physicochemical properties, have attracted great research attention recently. Here, a new approach is developed to prepare, for the first time, proton-functionalized ultrathin g-C3N4 nanosheets by sonication-exfoliation of bulk g-C3N4 under an acid condition. This method not only reduces the exfoliation time from more than 10 h to 2 h, but also endows the nanosheets with positive charges. Besides retaining the properties of g-C3N4, the obtained nanosheets with the thickness of 2-4 nm (i.e., 6-12 atomic monolayers) also exhibit large specific surface area of 305 m(2) g(-1), enhanced fluorescence intensity, and excellent water dispersion stability due to their surface protonation and ultrathin morphology. The well-dispersed protonated g-C3N4 nanosheets are able to interact with negatively charged heparin, which results in the quenching of g-C3N4 fluorescence. A highly sensitive and highly selective heparin sensing platform based on protonated g-C3N4 nanosheets is established. This metal-free and fluorophore label-free system can reach the lowest heparin detection limit of 18 ng mL(-1).


Assuntos
Técnicas Biossensoriais , Materiais Revestidos Biocompatíveis/síntese química , Grafite/química , Nanoestruturas/química , Nitrilas/química , Prótons , Animais , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Materiais Revestidos Biocompatíveis/química , Heparina/análise , Heparina/sangue , Humanos , Limite de Detecção , Teste de Materiais , Metais , Nitrilas/síntese química , Suínos
8.
Small ; 10(5): 871-7, 2014 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-24115742

RESUMO

A new strategy for promoting endoplasmic gene delivery and nucleus uptake is proposed by developing intracellular microenvironment responsive biocompatible polymers. This delivery system can efficiently load and self-assemble nucleic acids into nano-structured polyplexes at a neutral pH, release smaller imidazole-gene complexes from the polymer backbones at intracellular endosomal pH, transport nucleic acids into nucleus through intracellular environment responsive multiple-stage gene delivery, thus leading to a high cell transfection efficiency.


Assuntos
Microambiente Celular , Técnicas de Transferência de Genes , Polímeros/farmacologia , Quitosana/química , DNA/ultraestrutura , Células HeLa , Humanos , Imidazóis/química , Tamanho da Partícula , Plasmídeos/ultraestrutura , Polímeros/síntese química , Polímeros/química , Bases de Schiff/química , Transfecção
9.
Environ Pollut ; 320: 121073, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36641062

RESUMO

The prevalence of microplastic pollution in the ocean has caused widespread concern. Many studies have focused on the occurrence of microplastics in the marine environment and organisms, but the fate of microplastics in the ocean is still unclear, and the factors affecting the distribution of microplastics have not yet been consistently concluded. The aims of this study were to estimate the load of microplastics in benthic organisms as a temporary storage and to analyze the factors affecting microplastic ingestion by benthic organisms. For the purpose of this study, the benthic organisms in Jiaozhou Bay, China, were collected quarterly and were divided into the following six groups: polychaetes, mollusks, crustaceans, echinoderms, fish, and others. We concluded that the microplastic abundance in the benthos in Jiaozhou Bay was 1.00 ± 0.11 items/ind. (15.5 ± 3.5 items/g). The total load of microplastics in the benthic fauna in the bay with an area of 374 km2 was estimated to be 36.4 kg. On an individual basis, the fish contained significantly more microplastics than the other taxa. Furthermore, the characteristics of the microplastics in the benthic organisms were mainly fibrous, black, polyethylene, and <500 µm in size. In addition, the microplastic ingestion by benthic organisms was regulated by multiple factors, including biological characteristics and the environment. The masses of the organisms, the ambient seawater and sediment, and the spatial variations all influenced the microplastic ingestion by the organisms. The results of this study demonstrate that benthic organisms are an important storage for microplastics as they transferred through the ocean, and they provide an unbiased comparison of microplastic pollution among multiple organisms and the relevant pollution factors.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Plásticos , Baías , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Peixes , China
10.
Colloids Surf B Biointerfaces ; 223: 113141, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36682296

RESUMO

Dopamine is a small molecule inspired by the dopamine motif of mussel foot proteins, and PDA is formed by the self-polymerization of dopamine. Under the UV-irradiation,PDA would be oxidized by reactive oxygen species (ROS) which were produced by photocatalytic reactions on TiO2 surfaces,thus regulating the adhesion behavior of endothelial cells (ECs) TiO2 inhibited platelet (Plt) adhesion after UV exposure. Polydopamine (PDA)-TiO2 micropatterns (P-PDA-TiO2) were prepared by magnetron sputtering and photolithography. This micropatterns successfully achieves selective adhesion of Plt and ECs. The selective adhesion of ECs disappears after vacuum reduction. In contrast to conventional cell patterning strategies, P-PDA-TiO2 can easily achieve pattern separation of ECs and Plts and provide a new concept for building complex blood-contacting devices.


Assuntos
Dopamina , Células Endoteliais , Polímeros/farmacologia
11.
Mater Sci Eng C Mater Biol Appl ; 123: 111996, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33812616

RESUMO

Titanium dioxide (TiO2) is a widely used biomaterial. It is a great challenge to confer antibacterial and antithrombotic properties to TiO2 while maintaining its cell affinity. Here, we developed a new strategy to achieve the above goal by comprehensively controlling the chemical cues and geometrical cues of the surface of TiO2. Using colloidal etching technology and UV irradiation treatment, we obtained the photofunctionalized nano-micro-honeycomb structured TiO2. The honeycomb structured increased the photocatalytic activity of TiO2, which endowed TiO2 with photo-induced superhydrophilicity to inhibit bacterial adhesion. The high photocatalytic activity also induced the strong photocatalytic oxidation of TiO2 surface organic adsorbates to suppress fibrinogen and platelet attachment. In addition, owing to the micropore trapping-isolation effect on the bacteria and the nano-frames' contact guidance effect on the growth and spreading of platelet pseudopods, the honeycomb structure also shows a considerable inhibiting effect on bacterial and platelet adhesion. Therefore, due to the controlled chemical and geometrical cues' synergistic effect, the photo-functionalized TiO2 honeycomb structure shows excellent bacterial-adhesion resistance and antithrombotic properties. More importantly, the photo-functionalized TiO2 honeycomb did not inhibit the adhesion and growth of endothelial cells (ECs) after culturing for 3 d, indicating a good cell affinity that the traditional antifouling surfaces do not possess.


Assuntos
Células Endoteliais , Titânio , Bactérias , Materiais Biocompatíveis , Titânio/farmacologia
12.
Nano Lett ; 9(12): 4019-24, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19995080

RESUMO

We investigate the permeability and selectivity of graphene sheets with designed subnanometer pores using first principles density functional theory calculations. We find high selectivity on the order of 10(8) for H(2)/CH(4) with a high H(2) permeance for a nitrogen-functionalized pore. We find extremely high selectivity on the order of 10(23) for H(2)/CH(4) for an all-hydrogen passivated pore whose small width (at 2.5 A) presents a formidable barrier (1.6 eV) for CH(4) but easily surmountable for H(2) (0.22 eV). These results suggest that these pores are far superior to traditional polymer and silica membranes, where bulk solubility and diffusivity dominate the transport of gas molecules through the material. Recent experimental investigations, using either electron beams or bottom-up synthesis to create pores in graphene, suggest that it may be possible to employ such techniques to engineer variable-sized, graphene nanopores to tune selectivity and molecular diffusivity. Hence, we propose using porous graphene sheets as one-atom-thin, highly efficient, and highly selective membranes for gas separation. Such a pore could have widespread impact on numerous energy and technological applications; including carbon sequestration, fuel cells, and gas sensors.


Assuntos
Gases/isolamento & purificação , Grafite/química , Membranas Artificiais , Modelos Químicos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Ultrafiltração/métodos , Simulação por Computador , Difusão , Gases/química , Modelos Moleculares , Porosidade
13.
ACS Biomater Sci Eng ; 6(4): 2038-2049, 2020 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33455322

RESUMO

Implantation of a drug-eluting stent is the most common treatment method for patients with cardiovascular atherosclerosis. However, this treatment may delay re-endothelialization, and the drug polymer-coated stent may induce thrombosis months after a stent implantation. The development of polymer-free drug-eluting stents is a promising approach to overcome these shortcomings. Titanium dioxide nanotubes (TiO2-NTs) are excellent drug carriers and have been considered as a potential material for polymer-free drug-eluting stents. However, TiO2-NTs reportedly induce severe blood clotting, which is a significant shortcoming for use as a stent. Vascular stents must be compatible with blood and must have antibacterial, anti-inflammatory, and selective inhibitory activities in the abnormal hyperplasia of smooth muscle cells, instead of delaying the re-endothelialization of endothelial cells. To meet these requirements, we presented a composite material that featured ultraviolet (UV) irradiation of TiO2-NTs-containing silver nanoparticles (AgNPs). The AgNPs were loaded in the lumen of TiO2-NTs as a representative compound to suppress the inflammatory response and hyperplasia. UV irradiation was performed as a novel method to improve the anticoagulant ability of the AgNP-loaded TiO2-NTs. The chemical state and biocompatibility of the UV-TiO2-NTs@AgNPs were evaluated. UV irradiation strongly improved the anticoagulant ability of the TiO2-NTs and moderated the release of Ag+ from AgNPs, which selectively suppressed the inflammatory response and hyperplasia. Furthermore, the UV-TiO2-NTs@AgNPs-2 displayed enhanced biocompatibility evidenced by the inhibition of platelet adhesion, bactericidal activity, selective suppression of the smooth muscle cell proliferation, and inhibition of the adhesion of macrophages. The collective findings indicate the potential of the photofunctionalized TiO2-NTs loaded with AgNPs as a material for polymer-free drug-eluting stents.


Assuntos
Stents Farmacológicos , Nanopartículas Metálicas , Nanotubos , Preparações Farmacêuticas , Humanos , Polímeros , Prata , Titânio
14.
J Am Chem Soc ; 131(42): 15276-83, 2009 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-19807075

RESUMO

We describe the synthesis and characterization of metal-encoded polystyrene microspheres by multiple-stage dispersion polymerization with diameters on the order of 2 mum and a very narrow size distribution. Different lanthanides were loaded into these microspheres through the addition of a mixture of lanthanide salts (LnCl(3)) and excess acrylic acid (AA) or acetoacetylethyl methacrylate (AAEM) dissolved in ethanol to the reaction after about 10% conversion of styrene, that is, well after the particle nucleation stage was complete. Individual microspheres contain ca. 10(6)-10(8) chelated lanthanide ions, of either a single element or a mixture of elements. These microspheres were characterized one-by-one utilizing a novel mass cytometer with an inductively coupled plasma (ICP) ionization source and time-of-flight (TOF) mass spectrometry detection. Microspheres containing a range of different metals at different levels of concentration were synthesized to meet the requirements of binary encoding and enumeration encoding protocols. With four different metals at five levels of concentration, we could achieve a variability of 624, and the strategy we report should allow one to obtain much larger variability. To demonstrate the usefulness of element-encoded beads for highly multiplexed immunoassays, we carried out a proof-of-principle model bioassay involving conjugation of mouse IgG to the surface of La and Tm containing particles and its detection by an antimouse IgG bearing a metal-chelating polymer with Pr.


Assuntos
Quelantes/química , Elementos da Série dos Lantanídeos/química , Microesferas , Poliestirenos/síntese química , Animais , Imunoensaio , Imunoglobulina G/química , Camundongos , Microscopia Eletrônica de Varredura , Estrutura Molecular , Propriedades de Superfície
15.
J Biomed Mater Res A ; 106(11): 2899-2909, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30369008

RESUMO

Tumor spheroids are considered to be effective in drug screening and evaluation. Three-dimensional scaffold-based cell culture becomes very promising in producing multicellular spheroids. Different from other approaches, 3D scaffolds mimic in vivo cellular microenvironment which encourages intercellular and extracellular interactions. The properties of the cellular microenvironment include the surface wettability, chemistry, and charge of the scaffolds which may influence cell attachment, proliferation as well as migration and these properties are essential for multicellular spheroids formation. Through co-polymerization with different carboxylic acids, we demonstrate that the surface charge density and hydrophobicity of the microenvironment have a great impact on the tumor spheroids formation progress and their size distribution. Our results show that a scaffold with a moderate negative charge density and a highly hydrophilic surface promotes cell proliferation, resulting in quicker and larger spheroids formation. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2899-2909, 2018.


Assuntos
Resinas Acrílicas/química , Géis/química , Esferoides Celulares/citologia , Alicerces Teciduais/química , Ânions/química , Materiais Biocompatíveis/química , Técnicas de Cultura de Células , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células , Microambiente Celular , Células HEK293 , Células HeLa , Humanos , Temperatura
16.
ChemSusChem ; 11(1): 185-192, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29193841

RESUMO

Supported liquid membranes (SLMs) based on ionic liquids (ILs) with not only high gas permeability and selectivity, but also high stability under high pressure, are highly desired for gas separation applications. In this work, permeable and selective polyamide network (PN) layers are deposited on the surface of SLMs by utilizing the cross-linking reaction of trimesoyl chloride, which was pre-dispersed in the SLMs, and vapor of amine linkers. The vapor cross-linking method makes it easy to control the growth and aggregation of PN layers, owing to the significantly reduced reaction rate, and thereby ensuring the good distribution of PN layers on the surface of SLMs. With rational choice of amine linkers and optimization of vapor cross-linking conditions, the prepared sandwich-like PN@SLMs with ILs embedded homogeneously within polymeric matrices displayed much-improved CO2 permeability and CO2 /N2 selectivity in relation to the pristine SLMs. Moreover, those SLMs with ILs impregnated into porous supports physically displayed improved stability under high pressure after vapor cross-linking, because the PN layers formed on the surface of SLMs help prevent the ILs from being squeezed out. This interfacial engineering strategy represents a significant advance in the surface modification of SLMs to endow them with promising applications in CO2 capture.


Assuntos
Dióxido de Carbono/isolamento & purificação , Líquidos Iônicos , Membranas Artificiais , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Reagentes de Ligações Cruzadas/química , Microscopia Eletrônica de Varredura , Polímeros/química , Porosidade , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria
17.
ACS Appl Mater Interfaces ; 10(44): 37783-37796, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30360109

RESUMO

To tune the chemical, physical, and mechanical microenvironment for cardiac stromal cells to treat acute myocardial infarction (MI), we prepared a series of thermally responsive microgels with different surface charges (positive, negative, and neutral) and different degrees of hydrophilicity, as well as functional groups (carboxyl, hydroxyl, amino, and methyl). These microgels were used as injectable hydrogels to create an optimized microenvironment for cardiac stromal cells (CSCs). Our results indicated that a hydrophilic and negatively charged microenvironment created from poly( N-isopropylacrylamide- co-itaconic acid) was favorable for maintaining high viability of CSCs, promoting CSC proliferation and facilitating the formation of CSC spheroids. A large number of growth factors, such as vascular endothelial growth factor (VEGF), insulin-like growth factor I (IGF-1), and stromal-derived factor-1 (SDF-1) were released from the spheroids, promoting neonatal rat cardiomyocyte activation and survival. After injecting the poly( N-isopropylacrylamide- co-itaconic acid) microgel into mice, we examined their acute inflammation and T-cell immune reactions. The microgel itself did not elicit obvious immune response. We then injected the same microgel-encapsulated with CSCs into MI mice. The result revealed the treatment-promoted MI heart repair through angiogenesis and inhibition of apoptosis with an improved cell retention rate. This study will open a door for tailoring poly( N-isopropylacrylamide)-based microgel as a delivery vehicle for CSC therapy.


Assuntos
Hidrogéis/administração & dosagem , Infarto do Miocárdio/terapia , Miócitos Cardíacos/efeitos dos fármacos , Células Estromais/efeitos dos fármacos , Acrilamidas/administração & dosagem , Acrilamidas/química , Animais , Microambiente Celular/efeitos dos fármacos , Quimiocina CXCL12/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Hidrogéis/química , Interações Hidrofóbicas e Hidrofílicas/efeitos dos fármacos , Fator de Crescimento Insulin-Like I/genética , Camundongos , Infarto do Miocárdio/patologia , Miócitos Cardíacos/patologia , Polímeros/administração & dosagem , Polímeros/química , Ratos , Células Estromais/patologia , Succinatos/química , Linfócitos T/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/genética
18.
ChemSusChem ; 11(4): 763-772, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29363278

RESUMO

A composite organic cathode material based on aromatic polyimide (PI) and highly conductive graphene was prepared through a facile in situ polymerization method for application in lithium-ion batteries. The in situ polymerization generated intimate contact between PI and electronically conductive graphene, resulting in conductive composites with highly reversible redox reactions and good structure stability. The synergistic effect between PI and graphene enabled not only a high reversible capacity of 232.6 mAh g-1 at a charge-discharge rate of C/10 but also exceptionally high-rate cycling stability, that is, a high capacity of 108.9 mAh g-1 at a very high charge-discharge rate of 50C with a capacity retention of 80 % after 1000 cycles. This improved electrochemical performance resulted from the combination of stable redox reversibility of PI and high electronic conductivity of the graphene additive. The graphene-based composite also exhibited much better performance than composites based on multi-walled carbon nanotubes and the conductive carbon black C45 in terms of specific capacity and long-term cycling stability under the same charge-discharge rates.


Assuntos
Fontes de Energia Elétrica , Grafite/química , Lítio , Resinas Sintéticas/química , Condutividade Elétrica , Técnicas Eletroquímicas , Eletrodos , Íons , Oxirredução , Polimerização
19.
J Phys Chem B ; 111(2): 371-8, 2007 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-17214488

RESUMO

The viscosity of hydrophobic ethoxylated urethane (HEUR) solution decreased in the presence of alpha-CD or m-beta-CD; however their interactions were quite different. When the alpha-CD/hydrophobe molar ratio exceeded 5.0, the viscosity was close to that of a PEO solution of similar molecular weight. Oscillatory shear indicated that the mechanically active chains in HEUR solution decreased with the addition of alpha-CD. This agreed with the hypothesis that alpha-CD formed an inclusion complex with the hydrophobic moiety of the HEUR polymer, thereby destroying the transient hydrophobic associative network. The viscosity/temperature relationship of the alpha-CD/HEUR system (for HEUR with 70% of the PEO chains capped at both ends) did not obey the Arrhenius relationship for alpha-CD/hydrophobe molar ratio in the range 0.8-5.0. The low shear viscosity increased with increasing temperature at molar ratio of 1.0, and this was attributed to the competitive complexation of the alpha-CD/hydrophobe and the alpha-CD/PEO chain. Increasing temperature favored alpha-CD/PEO complexation. Comparison between the behavior of alpha-CD/HEUR and m-beta-CD/HEUR resulting from the different binding characteristics was discussed.


Assuntos
Poliuretanos/química , alfa-Ciclodextrinas/química , beta-Ciclodextrinas/química , Interações Hidrofóbicas e Hidrofílicas , Estrutura Molecular , Reologia , Soluções/química , Temperatura , Viscosidade , beta-Ciclodextrinas/síntese química
20.
J Nanosci Nanotechnol ; 7(4-5): 1176-96, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17450886

RESUMO

Due to the theoretical importance and potential applications of fullerene, numerous fullerene derivatives have been developed to enhance its solubility and processability. This article provides an overview on fullerene containing polymers, from synthesis to their physicochemical properties in solution. Due to the unique chemical structure of fullerene, different fullerene containing polymeric architecture can be synthesized through various kinds of conjugating techniques, where fullerene can be located either on the backbone or the branch chain. Recently, the successful development of azido coupling and atom transfer radical addition (ATRA) makes it possible to synthesize "controlled" and well-defined fullerene containing polymers. Experimental results indicated that fullerene containing polymers not only increase the solubility of fullerene in solution, but also retain the conjugating properties of fullerene molecules. By blocking well-defined functional polymers onto fullerene molecules, different types of stimuli-responsive amphiphilic systems can be achieved. However, the large bulk volume and high hydrophobicity of fullerene gives rise to the large aggregates with different morphologies produced in solution, which can be tuned by changing external stimuli, such as pH, temperature, salt, and co-solvents. Interestingly, fullerene containing anionic polymers could induce the formation nano-scale fractal pattern, but not fullerene containing cationic polymers, which is evident from morphological studies.


Assuntos
Fulerenos/química , Nanotecnologia/métodos , Polímeros/química , Carbono/química , Fractais , Concentração de Íons de Hidrogênio , Modelos Químicos , Conformação Molecular , Nanopartículas/química , Nanoestruturas/química , Sais/química , Solubilidade , Solventes/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA