Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(31): 11510-11519, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37489803

RESUMO

Accurately tracking carbon flows is the first step toward reducing the climate impacts of the iron and steel industry (ISI), which is still lacking in China. In this study, we track carbon flows from coal/mineral mines to end steel users by coupling the cross-process material and energy flow model, point-based emission inventory, and interprovincial trade matrices. In 2020, ISI emitted 2288 Tg of CO2 equivalent (CO2eq, including CH4 and CO2), 96% of which came from energy use and 4% from raw material decomposition. Often overlooked off-gas use and CH4 leakage in coal mines account for 25% of life-cycle emissions. Due to limited scrap resources and a high proportion of pig iron feed, the life-cycle emission intensity of the electric arc furnace (EAF) (1.15 t CO2eq/t steel) is slightly lower than the basic oxygen furnace (BOF) (1.58 t CO2eq/t steel) in China. In addition, over 49% of producer-based emissions are driven by interprovincial coal/coke/steel trade. In particular, nearly all user-based emissions in Zhejiang and Beijing are transferred to steelmaking bases. Therefore, we highlight the need for life-cycle and spatial shifts in user-side carbon management.


Assuntos
Poluentes Atmosféricos , Ferro , Animais , Suínos , Poluentes Atmosféricos/análise , Carbono , Aço , Dióxido de Carbono/análise , Carvão Mineral , China
2.
Pharm Res ; 30(2): 552-61, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23080062

RESUMO

PURPOSE: To develop cross-linked nanoassemblies (CNAs) as carriers for superparamagnetic iron oxide nanoparticles (IONPs). METHODS: Ferric and ferrous ions were co-precipitated inside core-shell type nanoparticles prepared by cross-linking poly(ethylene glycol)-poly(aspartate) block copolymers to prepare CNAs entrapping Fe(3)O(4) IONPs (CNA-IONPs). Particle stability and biocompatibility of CNA-IONPs were characterized in comparison to citrate-coated Fe(3)O(4) IONPs (Citrate-IONPs). RESULTS: CNA-IONPs, approximately 30 nm in diameter, showed no precipitation in water, PBS, or a cell culture medium after 3 or 30 h, at 22, 37, and 43°C, and 1, 2.5, and 5 mg/mL, whereas Citrate-IONPs agglomerated rapidly (> 400 nm) in all aqueous media tested. No cytotoxicity was observed in a mouse brain endothelial-derived cell line (bEnd.3) exposed to CNA-IONPs up to 10 mg/mL for 30 h. Citrate-IONPs (> 0.05 mg/mL) reduced cell viability after 3 h. CNA-IONPs retained the superparamagnetic properties of entrapped IONPs, enhancing T2-weighted magnetic resonance images (MRI) at 0.02 mg/mL, and generating heat at a mild hyperthermic level (40 ~ 42°C) with an alternating magnetic field (AMF). CONCLUSION: Compared to citric acid coating, CNAs with a cross-linked anionic core improved particle stability and biocompatibility of IONPs, which would be beneficial for future MRI and AMF-induced remote hyperthermia applications.


Assuntos
Materiais Biocompatíveis/química , Nanopartículas de Magnetita/química , Peptídeos/química , Polietilenoglicóis/química , Animais , Materiais Biocompatíveis/toxicidade , Encéfalo/citologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Precipitação Química , Citratos/química , Citratos/toxicidade , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/toxicidade , Temperatura Alta , Campos Magnéticos , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita/toxicidade , Camundongos , Tamanho da Partícula , Peptídeos/toxicidade , Polietilenoglicóis/toxicidade
3.
Sci Rep ; 13(1): 21501, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057444

RESUMO

Polyethylene glycol-coated magnetic nanoparticles (PEGylated MNPs) have demonstrated prominent advantages in cancer diagnosis and hyperthermia therapy. However, there is currently lack of standard mode and sufficient toxicity data for determining the delayed risk of PEGylated MNPs. Nevertheless, the toxicity potentials, especially those associated with the oxidative stress, were ubiquitously reported. In this study, PEGylated MNPs and p-PEGylated MNPs were administrated to SD (Sprague Dawley) rats by single intravenously injection, and various toxicity indicators were monitored till 56 days post-administration for a comprehensive toxicity evaluation. We revealed that both nanoparticles could be rapidly cleared from plasma and enter tissues, such as, liver, kidneys and spleen, and p-PEGylated MNP is less prone to be accumulated in the tissues, indicating a lower toxicity risk. PEGylated MNPs were more likely to up-regulate the expression levels of Th2 type cytokines and trigger inflammatory pathways, but no related pathological change was found. Both MNPs are not mutagenic, while recoverable mild DNA damage associated with the presence of nanoparticles might also be observed. This study demonstrated a research approach for the non-clinical safety evaluation of nanoparticles. It also provided comprehensive valuable safety data for PEGylated and p-PEGylated MNPs, for promoting the clinical application and bio-medical translation of such MNPs with PEG modifications in the cancer diagnosis and therapy.


Assuntos
Nanopartículas de Magnetita , Neoplasias , Ratos , Animais , Nanopartículas de Magnetita/uso terapêutico , Ratos Sprague-Dawley , Fígado , Polietilenoglicóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA