Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Soft Matter ; 18(33): 6254-6263, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35946517

RESUMO

Functionalized cellulosics have shown promise as naturally derived thermoresponsive gelling agents. However, the dynamics of thermally induced phase transitions of these polymers at the lower critical solution temperature (LCST) are not fully understood. Here, with experiments and theoretical considerations, we address how molecular architecture dictates the mechanisms and dynamics of phase transitions for cellulose ethers. Above the LCST, we show that hydroxypropyl substituents favor the spontaneous formation of liquid droplets, whereas methyl substituents induce fibril formation through diffusive growth. In celluloses which contain both methyl and hydroxypropyl substituents, fibrillation initiates after liquid droplet formation, suppressing the fibril growth to a sub-diffusive rate. Unlike for liquid droplets, the dissolution of fibrils back into the solvated state occurs with significant thermal hysteresis. We tune this hysteresis by altering the content of substituted hydroxypropyl moieties. This work provides a systematic study to decouple competing mechanisms during the phase transition of multi-functionalized macromolecules.


Assuntos
Celulose , Éteres , Transição de Fase , Polímeros , Temperatura
2.
Soft Matter ; 17(43): 9893-9900, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34605524

RESUMO

From pasta to biological tissues to contact lenses, gel and gel-like materials inherently soften as they swell with water. In dry, low-relative-humidity environments, these materials stiffen as they de-swell with water. Here, we use semi-dilute polymer theory to develop a simple power-law relationship between hydrogel elastic modulus and swelling. From this relationship, we predict hydrogel stiffness or swelling at arbitrary relative humidities. Our close predictions of properties of hydrogels across three different polymer mesh families at varying crosslinking densities and relative humidities demonstrate the validity and generality of our understanding. This predictive capability enables more rapid material discovery and selection for hydrogel applications in varying humidity environments.


Assuntos
Lentes de Contato , Hidrogéis , Módulo de Elasticidade , Humanos , Umidade , Polímeros
3.
Proc Natl Acad Sci U S A ; 113(26): 7041-6, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27303035

RESUMO

Colonic mucus is a key biological hydrogel that protects the gut from infection and physical damage and mediates host-microbe interactions and drug delivery. However, little is known about how its structure is influenced by materials it comes into contact with regularly. For example, the gut abounds in polymers such as dietary fibers or administered therapeutics, yet whether such polymers interact with the mucus hydrogel, and if so, how, remains unclear. Although several biological processes have been identified as potential regulators of mucus structure, the polymeric composition of the gut environment has been ignored. Here, we demonstrate that gut polymers do in fact regulate mucus hydrogel structure, and that polymer-mucus interactions can be described using a thermodynamic model based on Flory-Huggins solution theory. We found that both dietary and therapeutic polymers dramatically compressed murine colonic mucus ex vivo and in vivo. This behavior depended strongly on both polymer concentration and molecular weight, in agreement with the predictions of our thermodynamic model. Moreover, exposure to polymer-rich luminal fluid from germ-free mice strongly compressed the mucus hydrogel, whereas exposure to luminal fluid from specific-pathogen-free mice-whose microbiota degrade gut polymers-did not; this suggests that gut microbes modulate mucus structure by degrading polymers. These findings highlight the role of mucus as a responsive biomaterial, and reveal a mechanism of mucus restructuring that must be integrated into the design and interpretation of studies involving therapeutic polymers, dietary fibers, and fiber-degrading gut microbes.


Assuntos
Colo/metabolismo , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Mucosa Intestinal/química , Polímeros/química , Animais , Fenômenos Biomecânicos , Colo/química , Feminino , Microbioma Gastrointestinal , Hidrogel de Polietilenoglicol-Dimetacrilato/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Polímeros/metabolismo
4.
J Chromatogr A ; 1735: 465326, 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39236358

RESUMO

Despite decades of research and development, the optimal efficiency of slurry-packed HPLC columns is still hindered by inherent long-range flow heterogeneity from the wall to the central bulk region of these columns. Here, we show an example of how this issue can be addressed through the straightforward addition of a semidilute amount (500 ppm) of a large, flexible, synthetic polymer (18 MDa partially hydrolyzed polyacrylamide, HPAM) to the mobile phase (1% NaCl aqueous solution, hereafter referred to as "brine") during operation of a 4.6 mm × 300 mm column packed with 10µm BEHTM 125 Å particles. Addition of the polymer imparts elasticity to the mobile phase, causing the flow in the interparticle pore space to become unstable above a threshold flow rate. We verify the development of this elastic flow instability using pressure drop measurements of the friction factor versus Reynolds number. In prior work, we showed that this flow instability is characterized by large spatiotemporal fluctuations in the pore-scale flow velocities that may promote analyte dispersion across the column. Axial dispersion measurements of the quasi non-retained tracer thiourea confirm this possibility: they reveal that operating above the onset of the instability improves column efficiency by greater than 100%. These experiments thereby suggest that elastic flow instabilities can be harnessed to mitigate the negative impact of trans-column flow heterogeneities on the efficiency of slurry-packed HPLC columns. While this approach has its own inherent limitations and constraints, our results lay the groundwork for future targeted development of polymers that can impart elasticity when dissolved in commonly used liquid chromatography mobile phases, and can thereby generate elastic flow instabilities to help improve the resolution of HPLC columns.


Assuntos
Resinas Acrílicas , Cromatografia Líquida de Alta Pressão/métodos , Cinética , Resinas Acrílicas/química , Elasticidade
5.
ACS Appl Bio Mater ; 5(11): 5310-5320, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36288477

RESUMO

To mitigate antimicrobial resistance, we developed polymeric nanocarrier delivery of the chemorepellent signaling agent, nickel, to interfere with Escherichia coli transport to a surface, an incipient biofilm formation stage. The dynamics of nickel nanocarrier (Ni NC) chemorepellent release and induced chemorepellent response required to effectively modulate bacterial transport for biofilm prevention were characterized in this work. Ni NCs were fabricated with the established Flash NanoPrecipitation method. NC size was characterized with dynamic light scattering. Measured with a zincon monosodium salt colorimetric assay, NC nickel release was pH-dependent, with 62.5% of total encapsulated nickel released at pH 7 within 0-15 min, competitive with rapid E. coli transport to the surface. Confocal laser scanning microscopy of E. coli (GFP-expressing) biofilm growth dynamics on fluorescently labeled Ni NC coated glass coupled with a theoretical dynamical criterion probed the biofilm prevention outcomes of NC design. The Ni NC coating significantly reduced E. coli attachment compared to a soluble nickel coating and reduced E. coli biomass area by 61% compared to uncoated glass. A chemical-in-plug assay revealed Ni NCs induced a chemorepellent response in E. coli. A characteristic E. coli chemorepellent response was observed away from the Ni NC coated glass over 10 µm length scales effective to prevent incipient biofilm surface attachment. The dynamical criterion provided semiquantitative analysis of NC mechanisms to control biofilm and informed optimal chemorepellent release profiles to improve NC biofilm inhibition. This work is fundamental for dynamical informed design of biofilm-inhibiting chemorepellent-loaded NCs promising to mitigate the development of resistance and interfere with the transport of specific pathogens.


Assuntos
Escherichia coli , Níquel , Níquel/farmacologia , Biofilmes , Polímeros/farmacologia
6.
Elife ; 82019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30666958

RESUMO

The lumen of the small intestine (SI) is filled with particulates: microbes, therapeutic particles, and food granules. The structure of this particulate suspension could impact uptake of drugs and nutrients and the function of microorganisms; however, little is understood about how this suspension is re-structured as it transits the gut. Here, we demonstrate that particles spontaneously aggregate in SI luminal fluid ex vivo. We find that mucins and immunoglobulins are not required for aggregation. Instead, aggregation can be controlled using polymers from dietary fiber in a manner that is qualitatively consistent with polymer-induced depletion interactions, which do not require specific chemical interactions. Furthermore, we find that aggregation is tunable; by feeding mice dietary fibers of different molecular weights, we can control aggregation in SI luminal fluid. This work suggests that the molecular weight and concentration of dietary polymers play an underappreciated role in shaping the physicochemical environment of the gut. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).


Assuntos
Fibras na Dieta , Intestino Delgado/fisiologia , Polímeros/química , Adsorção , Animais , Feminino , Concentração de Íons de Hidrogênio , Imunoglobulinas/química , Intestino Delgado/patologia , Espectroscopia de Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peso Molecular , Pectinas/química , Polietilenoglicóis/química , Resistência ao Cisalhamento
7.
Nano Lett ; 9(1): 7-11, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18613730

RESUMO

Graphene-derived nanomaterials are emerging as ideal candidates for postsilicon electronics. Elucidating the electronic interaction between an insulating substrate and few-layer graphene (FLG) films is crucial for device applications. Here, we report electrostatic force microscopy (EFM) measurements revealing that the FLG surface potential increases with film thickness, approaching a "bulk" value for samples with five or more graphene layers. This behavior is in sharp contrast with that expected for conventional conducting or semiconducting films, and derives from unique aspects of charge screening by graphene's relativistic low energy carriers. EFM measurements resolve previously unseen electronic perturbations extended along crystallographic directions of structurally disordered FLGs, likely resulting from long-range atomic defects. These results have important implications for graphene nanoelectronics and provide a powerful framework by which key properties can be further investigated.


Assuntos
Cristalização/métodos , Grafite/química , Membranas Artificiais , Modelos Químicos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Simulação por Computador , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Eletricidade Estática , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA