Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Cancer ; 22(1): 473, 2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35488257

RESUMO

BACKGROUND: Gastric cancer (GC) is the fifth most common cancer and the third cause of cancer deaths globally, with late diagnosis, low survival rate, and poor prognosis. This case-control study aimed to evaluate the expression of cystatin B (CSTB) and deleted in malignant brain tumor 1 (DMBT1) in the saliva of GC patients with healthy individuals to construct diagnostic algorithms using statistical analysis and machine learning methods. METHODS: Demographic data, clinical characteristics, and food intake habits of the case and control group were gathered through a standard checklist. Unstimulated whole saliva samples were taken from 31 healthy individuals and 31 GC patients. Through ELISA test and statistical analysis, the expression of salivary CSTB and DMBT1 proteins was evaluated. To construct diagnostic algorithms, we used the machine learning method. RESULTS: The mean salivary expression of CSTB in GC patients was significantly lower (115.55 ± 7.06, p = 0.001), and the mean salivary expression of DMBT1 in GC patients was significantly higher (171.88 ± 39.67, p = 0.002) than the control. Multiple linear regression analysis demonstrated that GC was significantly correlated with high levels of DMBT1 after controlling the effects of age of participants (R2 = 0.20, p < 0.001). Considering salivary CSTB greater than 119.06 ng/mL as an optimal cut-off value, the sensitivity and specificity of CSTB in the diagnosis of GC were 83.87 and 70.97%, respectively. The area under the ROC curve was calculated as 0.728. The optimal cut-off value of DMBT1 for differentiating GC patients from controls was greater than 146.33 ng/mL (sensitivity = 80.65% and specificity = 64.52%). The area under the ROC curve was up to 0.741. As a result of the machine learning method, the area under the receiver-operating characteristic curve for the diagnostic ability of CSTB, DMBT1, demographic data, clinical characteristics, and food intake habits was 0.95. The machine learning model's sensitivity, specificity, and accuracy were 100, 70.8, and 80.5%, respectively. CONCLUSION: Salivary levels of DMBT1 and CSTB may be accurate in diagnosing GCs. Machine learning analyses using salivary biomarkers, demographic, clinical, and nutrition habits data simultaneously could provide affordability models with acceptable accuracy for differentiation of GC by a cost-effective and non-invasive method.


Assuntos
Neoplasias Gástricas , Biomarcadores Tumorais/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Estudos de Casos e Controles , Cistatina B/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Saliva/metabolismo , Neoplasias Gástricas/patologia , Proteínas Supressoras de Tumor/metabolismo
2.
BMC Oral Health ; 21(1): 650, 2021 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-34922509

RESUMO

BACKGROUND: Early childhood caries is the most common infectious disease in childhood, with a high prevalence in developing countries. The assessment of the variables that influence early childhood caries as well as its pathophysiology leads to improved control of this disease. Cystatin S, as one of the salivary proteins, has an essential role in pellicle formation, tooth re-mineralization, and protection. The present study aims to assess salivary cystatin S levels and demographic data in early childhood caries in comparison with caries-free ones using statistical analysis and machine learning methods. METHODS: A cross-sectional, case-control study was undertaken on 20 cases of early childhood caries and 20 caries-free children as a control. Unstimulated whole saliva samples were collected by suction. Cystatin S concentrations in samples were determined using human cystatin S ELISA kit. The checklist was collected from participants about demographic characteristics, oral health status, and dietary habits by interviewing parents. Regression and receiver operating characteristic (ROC) curve analysis were done to evaluate the potential role of cystatin S salivary level and demographic using statistical analysis and machine learning. RESULTS: The mean value of salivary cystatin S concentration in the early childhood caries group was 191.55 ± 81.90 (ng/ml) and in the caries-free group was 370.06 ± 128.87 (ng/ml). T-test analysis showed a statistically significant difference between early childhood caries and caries-free groups in salivary cystatin S levels (p = 0.032). Investigation of the area under the curve (AUC) and accuracy of the ROC curve revealed that the logistic regression model based on salivary cystatin S levels and birth weight had the most and acceptable potential for discriminating of early childhood caries from caries-free controls. Furthermore, using salivary cystatin S levels enhanced the capability of machine learning methods to differentiate early childhood caries from caries-free controls. CONCLUSION: Salivary cystatin S levels in caries-free children were higher than the children with early childhood caries. Results of the present study suggest that considering clinical examination, demographic and socioeconomic factors, along with the salivary cystatin S levels, could be usefull for early diagnosis ofearly childhood caries in high-risk children; furthermore, cystatin S is a protective factor against dental caries.


Assuntos
Cárie Dentária , Cistatinas Salivares , Estudos de Casos e Controles , Criança , Pré-Escolar , Estudos Transversais , Cárie Dentária/diagnóstico , Cárie Dentária/epidemiologia , Suscetibilidade à Cárie Dentária , Humanos , Aprendizado de Máquina , Saliva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA