Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Pharmacol Res ; 169: 105617, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33872811

RESUMO

Traditional Chinese multi-herb-combined prescriptions usually show better performance than a single agent since a group of effective compounds interfere multiple disease-relevant targets simultaneously. Huang-Lian-Jie-Du decoction is a remedy made of four herbs that are widely used to treat oral ulcers, gingivitis, and periodontitis. However, the active ingredients and underlying mechanisms are not clear. To address these questions, we prepared a water extract solution of Huang-Lian-Jie-Du decoction (HLJDD), called it as WEH (Water Extract Solution of HLJDD), and used it to treat LPS-induced systemic inflammation in mice. We observed that WEH attenuated inflammatory responses including reducing production of cytokines, chemokines and interferons (IFNs), further attenuating emergency myelopoiesis, and preventing mice septic lethality. Upon LPS stimulation, mice pretreated with WEH increased circulating Ly6C- patrolling and splenic Ly6C+ inflammatory monocytes. The acute myelopoiesis related transcriptional factor profile was rearranged by WEH. Mechanistically we confirmed that WEH interrupted LPS/TLR4/CD14 signaling-mediated downstream signaling pathways through its nine principal ingredients, which blocked LPS stimulated divergent signaling cascades, such as activation of NF-κB, p38 MAPK, and ERK1/2. We conclude that the old remedy blunts LPS-induced "danger" signal recognition and transduction process at multiple sites. To translate our findings into clinical applications, we refined the crude extract into a pure multicomponent drug by directly mixing these nine chemical entities, which completely reproduced the effect of protecting mice from lethal septic shock. Finally, we reduced a large number of compounds within a multi-herb water extract to seven-chemical combination that exhibited superior therapeutic efficacy compared with WEH.


Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , Inflamação/tratamento farmacológico , Monócitos/efeitos dos fármacos , Extratos Vegetais/uso terapêutico , Fatores de Transcrição/efeitos dos fármacos , Animais , Reprogramação Celular/efeitos dos fármacos , Coptis chinensis , Medicamentos de Ervas Chinesas/administração & dosagem , Citometria de Fluxo , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Extratos Vegetais/administração & dosagem , Células RAW 264.7/efeitos dos fármacos , Fatores de Transcrição/metabolismo
2.
Heliyon ; 9(4): e15014, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37095967

RESUMO

Enterovirus 71 (EV71) is a predominant causative pathogen of hand-foot-and-mouth disease (HFMD) in children. Compared with other HFMD-associated viruses, EV71 tends to induce more severe neurological complications and even death. However, the detailed mechanism of EV71 causes nervous system disorder is still unclear. In this study, we found that EV71 induced the GSDMD/NLRP3-mediated pyroptosis of SH-SY5Y cells through up-regulated miR-146a. Through bioinformatic analysis, we identified C-X-C chemokine receptor type 4 (CXCR4) as the potential target of miR-146a. We noticed that the expression of CXCR4 was regulated by miR-146a during EV71 infection. Moreover, our results show that over-expression of CXCR4 attenuated EV71-induced pyroptosis of SY-SY5Y cells. These results reveal a previously unrecognized mechanism in which EV71 induces nervous system cells damage through regulating miR-146a/CXCR4 mediated pyroptosis.

3.
Int J Nanomedicine ; 15: 1771-1786, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32214810

RESUMO

PURPOSE: In this study, pH-sensitive poly(2-ethyl-2-oxazoline)-poly(lactic acid)-poly(ß-amino ester) (PEOz-PLA-PBAE) triblock copolymers were synthesized and were conjugated with an antimalaria drug artesunate (ART), for inhibition of a colon cancer xenograft model. METHODS: The as-prepared polymer prodrugs are tended to self-assemble into polymeric micelles in aqueous milieu, with PEOz segment as hydrophilic shell and PLA-PBAE segment as hydrophobic core. RESULTS: The pH sensitivity of the as-prepared copolymers was confirmed by acid-base titration with pKb values around 6.5. The drug-conjugated polymer micelles showed high stability for at least 96 h in PBS and 37°C, respectively. The as-prepared copolymer prodrugs showed high drug loading content, with 9.57%±1.24% of drug loading for PEOz-PLA-PBAE-ART4. The conjugated ART could be released in a sustained and pH-dependent manner, with 92% of released drug at pH 6.0 and 57% of drug released at pH 7.4, respectively. In addition, in vitro experiments showed higher inhibitory effect of the prodrugs on rodent CT-26 cells than that of free ART. Animal studies also demonstrated the enhanced inhibitory efficacy of PEOz-PLA-PBAE-ART2 micelles on the growth of rodent xenograft tumor. CONCLUSION: The pH-responsive artesunate polymer prodrugs are promising candidates for colon cancer adjuvant therapy.


Assuntos
Artesunato/farmacocinética , Neoplasias do Colo/tratamento farmacológico , Polímeros/química , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Animais , Artesunato/química , Neoplasias do Colo/patologia , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Feminino , Humanos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Camundongos Endogâmicos BALB C , Micelas , Oxazóis/química , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Nanomedicine (Lond) ; 12(2): 147-164, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27854565

RESUMO

AIM: Tumor metastasis is one of the leading causes of insufficient chemotherapy during cancer treatment. In this study, a poly(ß-amino ester) derivate was developed to fabricate paclitaxel (PTX) entrapped pH-responsive copolymer micelles for inhibition of breast cancer metastasis. MATERIALS & METHODS: PTX-loaded micelles were fabricated by thin film hydration method. The inhibition efficacy of the as-prepared micelles was evaluated on MDA-MB-231 cells and tumor bearing mice. RESULTS: PTX-loaded micelles were successfully prepared. Such micelles could promote drug uptake and MDA-MB-231 cell deaths, and suppress tumor metastasis. CONCLUSION: The pH-responsive PTX-loaded micelles are promising candidates in developing stimuli triggered drug delivery systems in acidic tumor microenvironments with improved inhibitory effects on tumor metastasis.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Portadores de Fármacos/química , Micelas , Paclitaxel/administração & dosagem , Paclitaxel/química , Polímeros/química , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cumarínicos/química , Cumarínicos/metabolismo , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Endogâmicos BALB C , Paclitaxel/farmacologia , Polímeros/administração & dosagem , Polímeros/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA