Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Int Ophthalmol ; 43(1): 215-232, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35932420

RESUMO

PURPOSE: To utilize melt electrowriting (MEW) technology using poly-(ε-caprolactone) (PCL) coupled with a 2-step co-culturing strategy for the development of a conjunctival bi-layer synthetic construct. METHODS: Melt electrowritten scaffolds using PCL were fabricated using an in-house-built MEW printer. Human conjunctival stromal cells (CjSCs) and epithelial cells (CjECs) were isolated from donor tissue. A 2-step co-culture method was done by first seeding the CjSCs and culturing for 4 weeks to establish a stromal layer, followed by CjECs and co-culturing for 2 more weeks. Cultured cells were each characterized by morphology and marker expression on immunofluorescence and qPCR. The produced construct was assessed for cellular proliferation using viability assays. The bi-layer morphology was assessed using scanning electron microscopy (SEM), confocal microscopy, and immunofluorescence imaging. The expression of extracellular matrix components and TGF-b was evaluated using qPCR. RESULTS: CjSCs were spindle-shaped and vimentin + while CjECs were polygonal and CK13 + . CjSCs showed consistent proliferation and optimal adherence with the scaffold at the 4-week culture mark. A 2-layered construct consisting of a CjSC-composed stromal layer and a CjEC-composed epithelial layer was appreciated on confocal microscopy, SEM, and immunofluorescence. CjSCs secreted collagens (types I, V, VI) but at differing amounts from natural tissue while TGF-b production was comparable. CONCLUSION: The 3D-printed melt electrowritten PCL scaffold paired with the 2-step co-culturing conditions of the scaffold allowed for the first approximation of a bi-layered stromal and epithelial reconstruction of the conjunctiva that can potentially improve the therapeutic arsenal in ocular surface reconstruction.


Assuntos
Poliésteres , Alicerces Teciduais , Humanos , Túnica Conjuntiva , Impressão Tridimensional
2.
Small ; 15(24): e1900873, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31058444

RESUMO

Heart valves are characterized to be highly flexible yet tough, and exhibit complex deformation characteristics such as nonlinearity, anisotropy, and viscoelasticity, which are, at best, only partially recapitulated in scaffolds for heart valve tissue engineering (HVTE). These biomechanical features are dictated by the structural properties and microarchitecture of the major tissue constituents, in particular collagen fibers. In this study, the unique capabilities of melt electrowriting (MEW) are exploited to create functional scaffolds with highly controlled fibrous microarchitectures mimicking the wavy nature of the collagen fibers and their load-dependent recruitment. Scaffolds with precisely-defined serpentine architectures reproduce the J-shaped strain stiffening, anisotropic and viscoelastic behavior of native heart valve leaflets, as demonstrated by quasistatic and dynamic mechanical characterization. They also support the growth of human vascular smooth muscle cells seeded both directly or encapsulated in fibrin, and promote the deposition of valvular extracellular matrix components. Finally, proof-of-principle MEW trileaflet valves display excellent acute hydrodynamic performance under aortic physiological conditions in a custom-made flow loop. The convergence of MEW and a biomimetic design approach enables a new paradigm for the manufacturing of scaffolds with highly controlled microarchitectures, biocompatibility, and stringent nonlinear and anisotropic mechanical properties required for HVTE.


Assuntos
Biomimética/instrumentação , Galvanoplastia/métodos , Valvas Cardíacas/citologia , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais/química , Fenômenos Biomecânicos , Biomimética/métodos , Prótese Vascular , Células Cultivadas , Regeneração Tecidual Guiada/instrumentação , Regeneração Tecidual Guiada/métodos , Doenças das Valvas Cardíacas/patologia , Doenças das Valvas Cardíacas/terapia , Humanos , Recém-Nascido , Teste de Materiais , Miócitos de Músculo Liso/citologia , Polímeros/química , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos , Cordão Umbilical/citologia
3.
Int J Mol Sci ; 20(5)2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30823680

RESUMO

Scaffolds made of biodegradable biomaterials are widely used to guide bone regeneration. Commonly, in vitro assessment of scaffolds' osteogenesis potential has been performed predominantly in monoculture settings. Hence, this study evaluated the potential of an unstimulated, growth factor-free co-culture system comprised of osteoblasts (OB) and peripheral blood mononuclear cells (PBMC) over monoculture of OB as an in vitro platform for screening of bone regeneration potential of scaffolds. Particularly, this study focuses on the osteogenic differentiation and mineralized matrix formation aspects of cells. The study was performed using scaffolds fabricated by means of a melt electrowriting (MEW) technique made of medical-grade polycaprolactone (PCL), with or without a surface coating of calcium phosphate (CaP). Qualitative results, i.e., cell morphology by fluorescence imaging and matrix mineralization by von Kossa staining, indicated the differences in cell behaviours in response to scaffolds' biomaterial. However, no obvious differences were noted between OB and OB+PBMC groups. Hence, quantitative investigation, i.e., alkaline phosphatase (ALP), tartrate-resistant acid phosphatase (TRAP) activities, and gene expression were quantitatively evaluated by reverse transcription-polymerase chain reaction (RT-qPCR), were evaluated only of PCL/CaP scaffolds cultured with OB+PBMC, while PCL/CaP scaffolds cultured with OB or PBMC acted as a control. Although this study showed no differences in terms of osteogenic differentiation and ECM mineralization, preliminary qualitative results indicate an obvious difference in the cell/non-mineralized ECM density between scaffolds cultured with OB or OB+PBMC that could be worth further investigation. Collectively, the unstimulated, growth factor-free co-culture (OB+PBMC) system presented in this study could be beneficial for the pre-screening of scaffolds' in vitro bone regeneration potential prior to validation in vivo.


Assuntos
Monócitos/citologia , Osteoblastos/citologia , Osteogênese , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Fosfatos de Cálcio/química , Diferenciação Celular , Células Cultivadas , Técnicas de Cocultura/métodos , Humanos , Poliésteres/química
4.
J Mater Chem B ; 9(10): 2532-2546, 2021 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-33660730

RESUMO

Finding the right balance in mechanical properties and degradation rate of biodegradable materials for biomedical applications is challenging, not only at the time of implantation but also during biodegradation. For instance, high elongation at break and toughness with a mid-term degradation rate are required for tendon scaffold or suture application, which cannot be found in each alpha polyester individually. Here, we hypothesise that blending semi-crystalline poly(p-dioxanone) (PDO) and poly(lactide-co-caprolactone) (LCL) in a specific composition will enhance the toughness while also enabling tailored degradation times. Hence, blends of PDO and LCL (PDO/LCL) were prepared in varying concentrations and formed into films by solvent casting. We thoroughly characterised the chemical, thermal, morphological, and mechanical properties of the new blends before and during hydrolytic degradation. Cellular performance was determined by seeding mouse fibroblasts onto the samples and culturing for 72 hours, before using proliferation assays and confocal imaging. We found that an increase in LCL content causes a decrease in hydrolytic degradation rate, as indicated by induced crystallinity, surface and bulk erosions, and tensile properties. Interestingly, the noncytotoxic blend containing 30% PDO and 70% LCL (PDO3LCL7) resulted in small PDO droplets uniformly dispersed within the LCL matrix and demonstrated a tailored degradation rate and toughening behaviour with a notable strain-hardening effect reaching 320% elongation at break; over 3 times the elongation of neat LCL. In summary, this work highlights the potential of PDO3LCL7 as a biomaterial for biomedical applications like tendon tissue engineering or high-performance absorbable sutures.


Assuntos
Materiais Biocompatíveis/química , Dioxanos/química , Poliésteres/química , Polímeros/química , Engenharia Tecidual/métodos , Animais , Materiais Biocompatíveis/uso terapêutico , Linhagem Celular , Proliferação de Células , Fibroblastos/citologia , Fibroblastos/metabolismo , Congelamento , Hidrólise , Interações Hidrofóbicas e Hidrofílicas , Cinética , Ligamentos , Camundongos , Temperatura , Tendões , Resistência à Tração , Fatores de Tempo
5.
Biomaterials ; 268: 120558, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33307369

RESUMO

Biomimetically designed medical-grade polycaprolactone (mPCL) dressings are 3D-printed with pore architecture and anisotropic mechanical characteristics that favor skin wound healing with reduced scarring. Melt electrowritten mPCL dressings are seeded with human gingival tissue multipotent mesenchymal stem/stromal cells and cryopreserved using a clinically approved method. The regenerative potential of fresh or frozen cell-seeded mPCL dressing is compared in a splinted full-thickness excisional wound in a rat model over six weeks. The application of 3D-printed mPCL dressings decreased wound contracture and significantly improved skin regeneration through granulation and re-epithelialization compared to control groups. Combining 3D-printed biomimetic wound dressings and precursor cell delivery enhances physiological wound closure with reduced scar tissue formation.


Assuntos
Células-Tronco Adultas , Cicatrização , Animais , Bandagens , Biomimética , Impressão Tridimensional , Ratos , Pele
6.
J Tissue Eng Regen Med ; 15(10): 841-851, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34327854

RESUMO

The cornea serves as the main refractive component of the eye with the corneal stroma constituting the thickest component in a stratified layered system of epithelia, stroma, and endothelium. Current treatment options for patients suffering from corneal diseases are limited to transplantation of a human donor cornea (keratoplasty) or to implantation of an artificial cornea (keratoprosthesis). Nevertheless, donor shortage and failure of artificial corneas to integrate with local tissue constitute important problems that have not been yet circumvented. Recent advances in biofabrication have made great progress toward the manufacture of tailored biomaterial templates with the potential of guiding partially or totally the regeneration process of the native cornea. However, the role of the corneal stroma on current tissue engineering strategies is often neglected. Here, we achieved a tissue-engineered corneal stroma substitute culturing primary keratocytes on scaffolds prepared via melt electrowriting (MEW). Scaffolds were designed to contain highly organized micrometric fibers to ensure transparency and encourage primary human keratocytes to self-orchestrate their own extracellular matrix deposition and remodeling. Results demonstrated reliable cell attachment and growth over a period of 5 weeks and confirmed the formation of a dense and highly organized de novo tissue containing collagen I, V, and VI as well as Keratocan, which resembled very closely the native corneal stoma. In summary, MEW brings us closer to the biofabrication of a viable corneal stroma substitute.


Assuntos
Substância Própria/fisiologia , Eletroquímica , Engenharia Tecidual , Ceratócitos da Córnea/citologia , Ceratócitos da Córnea/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/ultraestrutura , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Fenótipo , Poliésteres/química , Impressão Tridimensional , Alicerces Teciduais
7.
Adv Drug Deliv Rev ; 132: 214-234, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30048654

RESUMO

Developing multifunctional soft biomaterials capable of addressing all the requirements of the complex tissue regeneration process is a multifaceted problem. In order to tackle the current challenges, recent research efforts are increasingly being directed towards biomimetic design concepts that can be translated into soft biomaterials via advanced manufacturing technologies. Among those, soft network composites consisting of a continuous hydrogel matrix and a reinforcing fibrous network closely resemble native soft biological materials in terms of design and composition as well as physicochemical properties. This article reviews soft network composite systems with a particular emphasis on the design, biomaterial and fabrication aspects within the context of soft tissue engineering and drug delivery applications.


Assuntos
Materiais Biocompatíveis/metabolismo , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Sistemas de Liberação de Medicamentos , Humanos , Engenharia Tecidual
8.
ACS Appl Mater Interfaces ; 9(35): 29430-29437, 2017 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-28816441

RESUMO

We present a design rationale for stretchable soft network composites for engineering tissues that predominantly function under high tensile loads. The convergence of 3D-printed fibers selected from a design library and biodegradable interpenetrating polymer networks (IPNs) result in biomimetic tissue engineered constructs (bTECs) with fully tunable properties that can match specific tissue requirements. We present our technology platform using an exemplary soft network composite model that is characterized to be flexible, yet ∼125 times stronger (E = 3.19 MPa) and ∼100 times tougher (WExt = ∼2000 kJ m-3) than its hydrogel counterpart.


Assuntos
Engenharia Tecidual , Tecido Conjuntivo , Hidrogéis , Polímeros
9.
Biofabrication ; 9(2): 025014, 2017 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-28374682

RESUMO

Articular cartilage from a material science point of view is a soft network composite that plays a critical role in load-bearing joints during dynamic loading. Its composite structure, consisting of a collagen fiber network and a hydrated proteoglycan matrix, gives rise to the complex mechanical properties of the tissue including viscoelasticity and stress relaxation. Melt electrospinning writing allows the design and fabrication of medical grade polycaprolactone (mPCL) fibrous networks for the reinforcement of soft hydrogel matrices for cartilage tissue engineering. However, these fiber-reinforced constructs underperformed under dynamic and prolonged loading conditions, suggesting that more targeted design approaches and material selection are required to fully exploit the potential of fibers as reinforcing agents for cartilage tissue engineering. In the present study, we emulated the proteoglycan matrix of articular cartilage by using highly negatively charged star-shaped poly(ethylene glycol)/heparin hydrogel (sPEG/Hep) as the soft matrix. These soft hydrogels combined with mPCL melt electrospun fibrous networks exhibited mechanical anisotropy, nonlinearity, viscoelasticity and morphology analogous to those of their native counterpart, and provided a suitable microenvironment for in vitro human chondrocyte culture and neocartilage formation. In addition, a numerical model using the p-version of the finite element method (p-FEM) was developed in order to gain further insights into the deformation mechanisms of the constructs in silico, as well as to predict compressive moduli. To our knowledge, this is the first study presenting cartilage tissue-engineered constructs that capture the overall transient, equilibrium and dynamic biomechanical properties of human articular cartilage.


Assuntos
Órgãos Bioartificiais , Materiais Biocompatíveis/química , Hidrogéis/química , Engenharia Tecidual , Idoso , Materiais Biocompatíveis/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Condrócitos/citologia , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Força Compressiva , Heparina/química , Humanos , Masculino , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Poliésteres , Polietilenoglicóis/química , Viscosidade , Microtomografia por Raio-X
10.
Adv Drug Deliv Rev ; 107: 228-246, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27492211

RESUMO

New advanced manufacturing technologies under the alias of additive biomanufacturing allow the design and fabrication of a range of products from pre-operative models, cutting guides and medical devices to scaffolds. The process of printing in 3 dimensions of cells, extracellular matrix (ECM) and biomaterials (bioinks, powders, etc.) to generate in vitro and/or in vivo tissue analogue structures has been termed bioprinting. To further advance in additive biomanufacturing, there are many aspects that we can learn from the wider additive manufacturing (AM) industry, which have progressed tremendously since its introduction into the manufacturing sector. First, this review gives an overview of additive manufacturing and both industry and academia efforts in addressing specific challenges in the AM technologies to drive toward AM-enabled industrial revolution. After which, considerations of poly(lactides) as a biomaterial in additive biomanufacturing are discussed. Challenges in wider additive biomanufacturing field are discussed in terms of (a) biomaterials; (b) computer-aided design, engineering and manufacturing; (c) AM and additive biomanufacturing printers hardware; and (d) system integration. Finally, the outlook for additive biomanufacturing was discussed.


Assuntos
Materiais Biocompatíveis/síntese química , Bioimpressão/métodos , Manufaturas , Poliésteres/síntese química , Materiais Biocompatíveis/química , Bioimpressão/instrumentação , Desenho Assistido por Computador , Poliésteres/química
11.
Tissue Eng Part A ; 21(9-10): 1633-41, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25668195

RESUMO

Substrate stiffness, biochemical composition, and matrix topography deeply influence cell behavior, guiding motility, proliferation, and differentiation responses. The aim of this work was to determine the effect that the stiffness and protein composition of the underlying substrate has on the differentiation of induced pluripotent stem (iPS) cells and the potential synergy with specific soluble cues. With that purpose, murine iPS-derived embryoid bodies (iPS-EBs) were seeded on fibronectin- or collagen I-coated polyacrylamide (pAA) gels of tunable stiffness (0.6, 14, and 50 kPa) in the presence of basal medium; tissue culture polystyrene plates were employed as control. Specification of iPS cells toward the three germ layers was analyzed, detecting an increase of tissue-specific gene markers in the pAA matrices. Interestingly, soft matrix (0.6 kPa) coated with fibronectin favored differentiation toward cardiac and neural lineages and, in the case of neural differentiation, the effect was potentiated by the addition of specific soluble factors. The generation of mature astrocytes, neural cells, and cardiomyocytes was further proven by immunofluorescence and transmission electron microscopy. In summary, this work emphasizes the importance of using biomimetic matrices to accomplish a more specific and mature differentiation of stem cells for future therapeutic applications.


Assuntos
Resinas Acrílicas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/citologia , Animais , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Fenômenos Biomecânicos/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Corpos Embrioides/citologia , Corpos Embrioides/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Camundongos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Especificidade de Órgãos/efeitos dos fármacos
12.
Biofabrication ; 6(3): 035017, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24989789

RESUMO

Collagen gels have been extensively used as three-dimensional (3D) cell culture systems. To enhance their mechanical properties, the manufacture of collagen-based gels with agarose has been proposed. However, little is known about the stability of these gels under cold storage conditions. The consequences of cold storage on biological tissues for clinical applications are known to be significant; yet, they have not been considered on hydrogels used for in vitro experiments. This work studies the effect of extended cold storage on the stability of collagen and collagen-agarose hydrogels using rheometry and scanning electron microscopy. In addition, cell-matrix interactions of adipose-derived stem cells (ADSC) have been studied using these gels. Results show that both the storage modulus (G') and loss modulus (G″) of pure collagen gels gradually decrease with extended cold storage along the 30 days of the study, while G' and G″ increase in collagen-agarose gels under the same conditions. Moreover, significant changes in both moduli of collagen-agarose gels were only found after 30 days of cold storage, while in the case of collagen gels significant changes were already detected after 7 days. Finally, a reduction in the ability of ADSC to remodel the gel after prolonged cold storage was observed. To the best of our knowledge, this is the first work proving that cold storage of hydrogels prior to cell culture might have a significant impact on their mechanical properties and cell-matrix interactions.


Assuntos
Tecido Adiposo/citologia , Colágeno/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Células-Tronco/citologia , Engenharia Tecidual/instrumentação , Alicerces Teciduais/química , Animais , Proliferação de Células , Células Cultivadas , Temperatura Baixa , Ratos , Engenharia Tecidual/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA