Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Angew Chem Int Ed Engl ; 62(44): e202309779, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37712344

RESUMO

Microgels are water-swollen, crosslinked polymers that are widely used as colloidal building blocks in scaffold materials for tissue engineering and regenerative medicine. Microgels can be controlled in their stiffness, degree of swelling, and mesh size depending on their polymer architecture, crosslink density, and fabrication method-all of which influence their function and interaction with the environment. Currently, there is a lack of understanding of how the polymer composition influences the internal structure of soft microgels and how this morphology affects specific biomedical applications. In this report, we systematically vary the architecture and molar mass of polyethylene glycol-acrylate (PEG-Ac) precursors, as well as their concentration and combination, to gain insight in the different parameters that affect the internal structure of rod-shaped microgels. We characterize the mechanical properties and diffusivity, as well as the conversion of acrylate groups during photopolymerization, in both bulk hydrogels and microgels produced from the PEG-Ac precursors. Furthermore, we investigate cell-microgel interaction, and we observe improved cell spreading on microgels with more accessible RGD peptide and with a stiffness in a range of 20 kPa to 50 kPa lead to better cell growth.


Assuntos
Microgéis , Microgéis/química , Hidrogéis/química , Alicerces Teciduais/química , Polímeros , Polietilenoglicóis/química , Acrilatos
2.
Mol Pharm ; 19(9): 3256-3266, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35905480

RESUMO

Gas-filled microbubbles (MB) are routinely used in the clinic as ultrasound contrast agents. MB are also increasingly explored as drug delivery vehicles based on their ultrasound stimuli-responsiveness and well-established shell functionalization routes. Broadening the range of MB properties can enhance their performance in both imaging and drug delivery applications. This can be promoted by systematically varying the reagents used in the synthesis of MB, which in the case of polymeric MB include surfactants. We therefore set out to study the effect of key surfactant characteristics, such as the chemical structure, molecular weight, and hydrophilic-lipophilic balance on the formation of poly(butyl cyanoacrylate) (PBCA) MB, as well as on their properties, including shell thickness, drug loading capacity, ultrasound contrast, and acoustic stability. Two different surfactant families (i.e., Triton X and Tween) were employed, which show opposite molecular weight vs hydrophilic-lipophilic balance trends. For both surfactant types, we found that the shell thickness of PBCA MB increased with higher-molecular-weight surfactants and that the resulting MB with thicker shells showed higher drug loading capacities and acoustic stability. Furthermore, the higher proportion of smaller polymer chains of the Triton X-based MB (as compared to those of the Tween-based ones) resulted in lower polymer entanglement, improving drug loading capacity and ultrasound contrast response. These findings open up new avenues to fine-tune the shell properties of polymer-based MB for enhanced ultrasound imaging and drug delivery applications.


Assuntos
Microbolhas , Tensoativos , Acústica , Meios de Contraste/química , Humanos , Octoxinol , Preparações Farmacêuticas , Polímeros/química , Polissorbatos , Tensoativos/química
3.
Macromol Rapid Commun ; 41(18): e2000191, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32783361

RESUMO

The replacement of diseased and damaged organs remains an challenge in modern medicine. However, through the use of tissue engineering techniques, it may soon be possible to (re)generate tissues and organs using artificial scaffolds. For example, hydrogel networks made from hydrophilic precursor solutions can replicate many properties found in the natural extracellular matrix (ECM) but often lack the dynamic nature of the ECM, as many covalently crosslinked hydrogels possess elastic and static networks with nanoscale pores hindering cell migration without being degradable. To overcome this, macroporous colloidal hydrogels can be prepared to facilitate cell infiltration. Here, an easy method is presented to fabricate granular cellulose nanofibril hydrogel (CNF) scaffolds as porous networks for 3D cell cultivation. CNF is an abundant natural and highly biocompatible material that supports cell adhesion. Granular CNF scaffolds are generated by pre-crosslinking CNF using calcium and subsequently pressing the gel through micrometer-sized nylon meshes. The granular solution is mixed with fibroblasts and crosslinked with cell culture medium. The obtained granular CNF scaffold is significantly softer and enables well-distributed fibroblast growth. This cost-effective material combined with this efficient and facile fabrication technique allows for 3D cell cultivation in an upscalable manner.


Assuntos
Celulose , Hidrogéis , Materiais Biocompatíveis , Porosidade , Engenharia Tecidual , Alicerces Teciduais
4.
Small ; 15(20): e1900692, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30993907

RESUMO

Complex 3D artificial tissue constructs are extensively investigated for tissue regeneration. Frequently, materials and cells are delivered separately without benefitting from the synergistic effect of combined administration. Cell delivery inside a material construct provides the cells with a supportive environment by presenting biochemical, mechanical, and structural signals to direct cell behavior. Conversely, the cell/material interaction is poorly understood at the micron scale and new systems are required to investigate the effect of micron-scale features on cell functionality. Consequently, cells are encapsulated in microgels to avoid diffusion limitations of nutrients and waste and facilitate analysis techniques of single or collective cells. However, up to now, the production of soft cell-loaded microgels by microfluidics is limited to spherical microgels. Here, a novel method is presented to produce monodisperse, anisometric poly(ethylene) glycol microgels to study cells inside an anisometric architecture. These microgels can potentially direct cell growth and can be injected as rod-shaped mini-tissues that further assemble into organized macroscopic and macroporous structures post-injection. Their aspect ratios are adjusted with flow parameters, while mechanical and biochemical properties are altered by modifying the precursors. Encapsulated primary fibroblasts are viable and spread and migrate across the 3D microgel structure.


Assuntos
Encapsulamento de Células , Fibroblastos/citologia , Microfluídica , Microgéis/química , Polietilenoglicóis/química , Células Cultivadas , Módulo de Elasticidade , Humanos , Concentração de Íons de Hidrogênio
5.
Biomacromolecules ; 20(10): 3746-3754, 2019 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-31433624

RESUMO

Human induced pluripotent stem cells (hiPSCs) are used as an alternative for human embryonic stem cells. Cardiomyocytes derived from hiPSCs are employed in cardiac tissue regeneration constructs due to the heart's low regeneration capacity after infarction. A coculture of hiPSC-CM and primary dermal fibroblasts is encapsulated in injectable poly(ethylene glycol)-based microgels via microfluidics to enhance the efficiency of regenerative cell transplantations. The microgels are prepared via Michael-type addition of multi-arm PEG-based molecules with an enzymatically degradable peptide as a cross-linker and modified with a cell-adhesive peptide. Cell-cell interactions and, consequently, cell viability are improved by a thin extracellular matrix (ECM) coating formed on the cell surfaces via layer-by-layer (LbL) deposition. The beating strength of encapsulated cardiomyocytes (∼60 BPM) increases by 2-fold compared to noncoated cells. The combination of microfluidics with the LbL technique offers a new technology to fabricate functional cardiac mini tissues for cell transplantation therapies.


Assuntos
Hidrogéis/química , Microfluídica/métodos , Contração Miocárdica , Miócitos Cardíacos/fisiologia , Engenharia Tecidual/métodos , Adesão Celular , Diferenciação Celular , Células Cultivadas , Técnicas de Cocultura/métodos , Reagentes de Ligações Cruzadas/química , Matriz Extracelular/química , Fibroblastos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/citologia , Oligopeptídeos/química , Polietilenoglicóis/química , Análise de Célula Única/métodos , Alicerces Teciduais/química
6.
Biomacromolecules ; 20(11): 4075-4087, 2019 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-31614080

RESUMO

An enzymatically cross-linked polyethylene glycol (PEG)-based hydrogel was engineered to promote and align nerve cells in a three-dimensional manner. To render the injectable, otherwise bioinert, PEG-based material supportive for cell growth, its mechanical and biochemical properties were optimized. A recombinant fibronectin fragment (FNIII9*-10/12-14) was coupled to the PEG backbone during gelation to provide cell adhesive and growth factor binding domains in close vicinity. Compared to full-length fibronectin, FNIII9*-10/12-14 supports nerve growth at similar concentrations. In a 3D environment, only the ultrasoft 1 w/v% PEG hydrogels with a storage modulus of ∼10 Pa promoted neuronal growth. This gel was used to establish the first fully synthetic, injectable Anisogel by the addition of magnetically aligned microelements, such as rod-shaped microgels or short fibers. The Anisogel led to linear neurite extension and represents a large step in the direction of clinical translation with the opportunity to treat acute spinal cord injuries.


Assuntos
Fibronectinas/farmacologia , Hidrogéis/farmacologia , Neurônios/efeitos dos fármacos , Traumatismos da Medula Espinal/tratamento farmacológico , Materiais Biocompatíveis/química , Proliferação de Células/efeitos dos fármacos , Fibronectinas/química , Humanos , Hidrogéis/química , Tecido Nervoso/efeitos dos fármacos , Tecido Nervoso/crescimento & desenvolvimento , Neuritos/efeitos dos fármacos , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Traumatismos da Medula Espinal/patologia
7.
Cell Mol Life Sci ; 75(18): 3297-3312, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29728714

RESUMO

Mechanical stimulation affects growth and differentiation of stem cells. This may be used to guide lineage-specific cell fate decisions and therefore opens fascinating opportunities for stem cell biology and regenerative medicine. Several studies demonstrated functional and molecular effects of mechanical stimulation but on first sight these results often appear to be inconsistent. Comparison of such studies is hampered by a multitude of relevant parameters that act in concert. There are notorious differences between species, cell types, and culture conditions. Furthermore, the utilized culture substrates have complex features, such as surface chemistry, elasticity, and topography. Cell culture substrates can vary from simple, flat materials to complex 3D scaffolds. Last but not least, mechanical forces can be applied with different frequency, amplitude, and strength. It is therefore a prerequisite to take all these parameters into consideration when ascribing their specific functional relevance-and to only modulate one parameter at the time if the relevance of this parameter is addressed. Such research questions can only be investigated by interdisciplinary cooperation. In this review, we focus particularly on mesenchymal stem cells and pluripotent stem cells to discuss relevant parameters that contribute to the kaleidoscope of mechanical stimulation of stem cells.


Assuntos
Elasticidade , Células-Tronco Mesenquimais/citologia , Resistência ao Cisalhamento , Diferenciação Celular/efeitos dos fármacos , Dimetilpolisiloxanos/farmacologia , Humanos , Hidrogéis/química , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Mecanotransdução Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Plásticos/farmacologia
8.
Nano Lett ; 17(6): 3782-3791, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28326790

RESUMO

Injectable biomaterials provide the advantage of a minimally invasive application but mostly lack the required structural complexity to regenerate aligned tissues. Here, we report a new class of tissue regenerative materials that can be injected and form an anisotropic matrix with controlled dimensions using rod-shaped, magnetoceptive microgel objects. Microgels are doped with small quantities of superparamagnetic iron oxide nanoparticles (0.0046 vol %), allowing alignment by external magnetic fields in the millitesla order. The microgels are dispersed in a biocompatible gel precursor and after injection and orientation are fixed inside the matrix hydrogel. Regardless of the low volume concentration of the microgels below 3%, at which the geometrical constrain for orientation is still minimum, the generated macroscopic unidirectional orientation is strongly sensed by the cells resulting in parallel nerve extension. This finding opens a new, minimal invasive route for therapy after spinal cord injury.


Assuntos
Hidrogéis/química , Nanopartículas Metálicas/química , Neurônios/citologia , Animais , Anisotropia , Materiais Biocompatíveis , Galinhas , Campos Eletromagnéticos , Compostos Férricos/química , Compostos Férricos/toxicidade , Fibroblastos/citologia , Humanos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/toxicidade , Nanopartículas Metálicas/toxicidade , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Tamanho da Partícula , Polietilenoglicóis/química , Polietilenos/química , Polipropilenos/química , Alicerces Teciduais/química
9.
Biomacromolecules ; 17(3): 905-13, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26812393

RESUMO

The merging of defined nanoscale building blocks with advanced additive manufacturing techniques is of eminent importance for the preparation of multiscale and highly functional materials with de novo designed hierarchical architectures. Here, we demonstrate that hydrogels of cellulose nanofibrils (CNF) can be processed into complex shapes, and used as a sacrificial template to prepare freestanding cell constructs. We showcase our approach for the fabrication of hollow fibers using a controlled extrusion through a circular die into a coagulation bath. The dimensions of the hollow fibers are tunable, and the final tubes combine the nanofibrillar porosity of the CNF hydrogel with a submillimeter wall thickness and centimeter-scale length provided by the additive manufacturing technique. We demonstrate that covalent and supramolecular cross-linking of the CNFs can be used to tailor the mechanical properties of the hydrogel tubes within 1 order of magnitude and in an attractive range for the mechanosensation of cells. The resulting tubes are highly biocompatible and allow for the growth of mouse fibroblasts into confluent cell layers in their inner lumen. A detailed screening of several cellulases enables degradation of the scaffolding, temporary CNF hydrogel tube in a quick and highly cell-friendly way, and allows the isolation of coherent cell tubes. We foresee that the growing capabilities of hydrogel printing techniques in combination with the attractive features of CNFs-sustainable, globally abundant, biocompatible and enzymatically degradable-will allow making plant-based biomaterials with hierarchical structures and on-demand degradation useful, for instance, to engineer complex tissue structures to replace animal models, and for implants.


Assuntos
Celulose/análogos & derivados , Hidrogéis/química , Nanotubos/química , Alicerces Teciduais/química , Animais , Linhagem Celular , Celulase/química , Fibroblastos/efeitos dos fármacos , Hidrogéis/efeitos adversos , Fenômenos Mecânicos , Camundongos , Nanotubos/efeitos adversos , Alicerces Teciduais/efeitos adversos
10.
Adv Healthc Mater ; 12(18): e2300695, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37248777

RESUMO

Therapeutic antibodies are the key treatment option for various cytokine-mediated diseases, such as rheumatoid arthritis, psoriasis, and inflammatory bowel disease. However, systemic injection of these antibodies can cause side effects and suppress the immune system. Moreover, clearance of therapeutic antibodies from the blood is limiting their efficacy. Here, water-swollen microgels are produced with a size of 25 µm using droplet-based microfluidics. The microgels are functionalized with TNFα antibodies to locally scavenge the pro-inflammatory cytokine TNFα. Homogeneous distribution of TNFα-antibodies is shown throughout the microgel network and demonstrates specific antibody-antigen binding using confocal microscopy and FLIM-FRET measurements. Due to the large internal accessibility of the microgel network, its capacity to bind TNFα is extremely high. At a TNFα concentration of 2.5 µg mL-1 , the microgels are able to scavenge 88% of the cytokine. Cell culture experiments reveal the therapeutic potential of these microgels by protecting HT29 colorectal adenocarcinoma cells from TNFα toxicity and resulting in a significant reduction of COX II and IL8 production of the cells. When the microgels are incubated with stimulated human macrophages, to mimic the in vivo situation of inflammatory bowel disease, the microgels scavenge almost all TNFα that is produced by the cells.


Assuntos
Microgéis , Humanos , Citocinas , Fator de Necrose Tumoral alfa , Anticorpos , Células HT29
11.
Adv Healthc Mater ; 12(20): e2301030, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37311209

RESUMO

Recreating human tissues and organs in the petri dish to establish models as tools in biomedical sciences has gained momentum. These models can provide insight into mechanisms of human physiology, disease onset, and progression, and improve drug target validation, as well as the development of new medical therapeutics. Transformative materials play an important role in this evolution, as they can be programmed to direct cell behavior and fate by controlling the activity of bioactive molecules and material properties. Using nature as an inspiration, scientists are creating materials that incorporate specific biological processes observed during human organogenesis and tissue regeneration. This article presents the reader with state-of-the-art developments in the field of in vitro tissue engineering and the challenges related to the design, production, and translation of these transformative materials. Advances regarding (stem) cell sources, expansion, and differentiation, and how novel responsive materials, automated and large-scale fabrication processes, culture conditions, in situ monitoring systems, and computer simulations are required to create functional human tissue models that are relevant and efficient for drug discovery, are described. This paper illustrates how these different technologies need to converge to generate in vitro life-like human tissue models that provide a platform to answer health-based scientific questions.


Assuntos
Células-Tronco , Engenharia Tecidual , Humanos , Descoberta de Drogas , Sistemas de Liberação de Medicamentos , Materiais Biocompatíveis/farmacologia
12.
J Vis Exp ; (184)2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35786610

RESUMO

A two-component system of functionalized microgels from microfluidics allows for fast interlinking into 3D macroporous constructs in aqueous solutions without further additives. Continuous photoinitiated on-chip gelation enables variation of the microgel aspect ratio, which determines the building block properties for the obtained constructs. Glycidyl methacrylate (GMA) or 2-aminoethyl methacrylate (AMA) monomers are copolymerized into the microgel network based on polyethylene glycol (PEG) star-polymers to achieve either epoxy or amine functionality. A focusing oil flow is introduced into the microfluidic outlet structure to ensure continuous collection of the functionalized microgel rods. Based on a recent publication, microgel rod-based constructs result in larger pores of several hundred micrometers and, at the same time, lead to overall higher scaffold stability in comparison to a spherical-based model. In this way, it is possible to produce higher-volume constructs with more free volume while reducing the amount of material required. The interlinked macroporous scaffolds can be picked up and transported without damage or disintegration. Amine and epoxy groups not involved in interlinking remain active and can be used independently for post-modification. This protocol describes an optimized method for the fabrication of microgel rods to form macroporous interlinked scaffolds that can be utilized for subsequent cell experiments.


Assuntos
Microgéis , Aminas , Géis/química , Microfluídica , Polietilenoglicóis/química
13.
Adv Healthc Mater ; 11(6): e2101989, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34826201

RESUMO

Microgels are crosslinked, water-swollen networks with a 10 nm to 100 µm diameter and can be modified chemically or biologically to render them biocompatible for advanced clinical applications. Depending on their intended use, microgels require different mechanical and structural properties, which can be engineered on demand by altering the biochemical composition, crosslink density of the polymer network, and the fabrication method. Here, the fundamental aspects of microgel research and development, as well as their specific applications for theranostics and therapy in the clinic, are discussed. A detailed overview of microgel fabrication techniques with regards to their intended clinical application is presented, while focusing on how microgels can be employed as local drug delivery materials, scavengers, and contrast agents. Moreover, microgels can act as scaffolds for tissue engineering and regeneration application. Finally, an overview of microgels is given, which already made it into pre-clinical and clinical trials, while future challenges and chances are discussed. This review presents an instructive guideline for chemists, material scientists, and researchers in the biomedical field to introduce them to the fundamental physicochemical properties of microgels and guide them from fabrication methods via characterization techniques and functionalization of microgels toward specific applications in the clinic.


Assuntos
Microgéis , Sistemas de Liberação de Medicamentos , Hidrogéis/química , Polímeros/química , Engenharia Tecidual/métodos
14.
Adv Sci (Weinh) ; 9(10): e2103554, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35032119

RESUMO

In this work, a two component microgel assembly using soft anisometric microgels that interlink to create a 3D macroporous construct for cell growth is reported. Reactive microgel rods with variable aspect ratio are produced via microfluidics in a continuous plug-flow on-chip gelation method by photoinitiated free-radical polymerization of star-polyethylene glycol-acrylate with glycidyl methacrylate or 2-aminoethyl methacrylate comonomers. The resulting complementary epoxy- and amine-functionalized microgels assemble and interlink with each other via a ring opening reaction, resulting in macroporous constructs with pores up to several hundreds of micrometers. The level of crosslinking depends on the functionalization degree of the microgels, which also affects the stiffness and cell adhesiveness of the microgels when modified with the cell-adhesive GRGDS-PC peptide. Therefore, 3D spreading and growth of cells inside the macroporous structure is influenced not only by the presence of macropores but also by the mechanical and biochemical properties of the individual microgels.


Assuntos
Microgéis , Adesão Celular , Técnicas de Cultura de Células em Três Dimensões , Hidrogéis/química , Polietilenoglicóis/química
15.
Adv Sci (Weinh) ; 9(27): e2201169, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35904258

RESUMO

The intracellular environment is crowded with macromolecules that influence biochemical equilibria and biomacromolecule diffusion. The incorporation of such crowding in synthetic cells would be needed to mimic the biochemistry of living cells. However, only a few methods provide crowded artificial cells, moreover providing cells with either heterogeneous size and composition or containing a significant oil fraction. Therefore, a method that generates monodisperse liposomes with minimal oil content and tunable macromolecular crowding using polydimethylsiloxane (PDMS)-based microfluidics is presented. Lipid stabilized water-in-oil-in-water emulsions that are stable for at least several months and with a high macromolecular crowder concentration that can be controlled with the external osmolality are formed. A crucial feature is that the oil phase can be removed using high flow conditions at any point after production, providing the highly crowded liposomes. Genetically encoded macromolecular crowding sensors show that the high level of macromolecular crowding in the emulsions is fully retained throughout the generation of minimal-oil lipid bilayers. This modular and robust platform will serve the study of biochemistry under physiologically relevant crowding conditions.


Assuntos
Lipossomos , Microfluídica , Dimetilpolisiloxanos , Emulsões , Bicamadas Lipídicas , Substâncias Macromoleculares/química , Substâncias Macromoleculares/metabolismo , Água
16.
Adv Healthc Mater ; 11(24): e2200989, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36100464

RESUMO

Growing millimeter-scaled functional tissue remains a major challenge in the field of tissue engineering. Therefore, microporous annealed particles (MAPs) are emerging as promising porous biomaterials that are formed by assembly of microgel building blocks. To further vary the pore size and increase overall MAP porosity of mechanically stable scaffolds, rod-shaped microgels with high aspect ratios up to 20 are chemically interlinked into highly porous scaffolds. Polyethylene glycol based microgels (width 10 µm, lengths up to 200 µm) are produced via in-mold polymerization and covalently interlinked into stable 3D scaffolds via epoxy-amine chemistry. For the first time, MAP porosities can be enhanced by increasing the microgel aspect ratio (mean pore sizes ranging from 39 to 82 µm, porosities from 65 to 90%). These porosities are significantly higher compared to constructs made from spherical or lower aspect ratio rod-shaped microgels. Rapid filling of the pores by either murine or primary human fibroblasts is ensured as cells migrate and grow extensively into these scaffolds. Overall, this study demonstrates that highly porous, stable macroporous hydrogels can be achieved with a very low partial volume of synthetic, high aspect ratio microgels, leading to large empty volumes available for cell ingrowth and cell-cell interactions.


Assuntos
Microgéis , Humanos , Animais , Camundongos , Porosidade , Engenharia Tecidual/métodos , Materiais Biocompatíveis , Hidrogéis , Movimento Celular , Alicerces Teciduais
17.
Lab Chip ; 23(1): 182-194, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36448477

RESUMO

Continuous flow manufacturing (CFM) has shown remarkable advantages in the industrial-scale production of drug-loaded nanomedicines, including mRNA-based COVID-19 vaccines. Thus far, CFM research in nanomedicine has mainly focused on the initial particle formation step, while post-formation production steps are hardly ever integrated. The opportunity to implement in-line quality control of critical quality attributes merits closer investigation. Here, we designed and tested a CFM setup for the manufacturing of liposomal nanomedicines that can potentially encompass all manufacturing steps in an end-to-end system. Our main aim was to elucidate the key composition and process parameters that affect the physicochemical characteristics of the liposomes. Total flow rate, lipid concentration and residence time of the liposomes in a high ethanol environment (i.e., above 20% v/v) emerged as critical parameters to tailor liposome size between 80 and 150 nm. After liposome formation, the pressure and the surface area of the filter in the ultrafiltration unit were critical parameters in the process of clearing the dispersion from residual ethanol. As a final step, we integrated in-line measurement of liposome size and residual ethanol content. Such in-line measurements allow for real-time monitoring and in-process adjustment of key composition and process parameters.


Assuntos
COVID-19 , Lipossomos , Humanos , Lipossomos/química , Vacinas contra COVID-19 , Etanol , Tamanho da Partícula
18.
Adv Healthc Mater ; 10(2): e2001253, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33191651

RESUMO

Human in vitro tissues are extracorporeal 3D cultures of human cells embedded in biomaterials, commonly hydrogels, which recapitulate the heterogeneous, multiscale, and architectural environment of the human body. Contemporary strategies used in 3D tissue and organ engineering integrate the use of automated digital manufacturing methods, such as 3D printing, bioprinting, and biofabrication. Human tissues and organs, and their intra- and interphysiological interplay, are particularly intricate. For this reason, attentiveness is rising to intersect materials science, medicine, and biology with arts and informatics. This report presents advances in computational modeling of bioink polymerization and its compatibility with bioprinting, the use of digital design and fabrication in the development of fluidic culture devices, and the employment of generative algorithms for modeling the natural and biological augmentation of in vitro tissues. As a future direction, the use of serially linked in vitro tissues as human body-mimicking systems and their application in drug pharmacokinetics and metabolism, disease modeling, and diagnostics are discussed.


Assuntos
Bioimpressão , Engenharia Tecidual , Materiais Biocompatíveis , Humanos , Hidrogéis , Impressão Tridimensional
19.
Adv Healthc Mater ; 10(11): e2002221, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33951341

RESUMO

Tissue regeneration of sensitive tissues calls for injectable scaffolds, which are minimally invasive and offer minimal damage to the native tissues. However, most of these systems are inherently isotropic and do not mimic the complex hierarchically ordered nature of the native extracellular matrices. This review focuses on the different approaches developed in the past decade to bring in some form of anisotropy to the conventional injectable tissue regenerative matrices. These approaches include introduction of macroporosity, in vivo pattering to present biomolecules in a spatially and temporally controlled manner, availability of aligned domains by means of self-assembly or oriented injectable components, and in vivo bioprinting to obtain structures with features of high resolution that resembles native tissues. Toward the end of the review, different techniques to produce building blocks for the fabrication of heterogeneous injectable scaffolds are discussed. The advantages and shortcomings of each approach are discussed in detail with ideas to improve the functionality and versatility of the building blocks.


Assuntos
Materiais Biocompatíveis , Bioimpressão , Anisotropia , Hidrogéis , Engenharia Tecidual , Alicerces Teciduais
20.
Biomater Sci ; 9(12): 4329-4342, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33724266

RESUMO

Nerve regeneration scaffolds often consist of soft hydrogels modified with extracellular matrix (ECM) proteins or fragments, as well as linear and cyclic peptides. One of the commonly used integrin-mediated cell adhesive peptide sequences is Arg-Gly-Asp (RGD). Despite its straightforward coupling mechanisms to artificial extracellular matrix (aECM) constructs, linear RGD peptides suffer from low stability towards degradation and lack integrin selectivity. Cyclization of RGD improves the affinity towards integrin subtypes but lacks selectivity. In this study, a new class of short bicyclic peptides with RGD in a cyclic loop and 'random screened' tri-amino acid peptide sequences in the second loop is investigated as a biochemical cue for cell growth inside three-dimensional (3D) synthetic poly(ethylene glycol) (PEG)-based Anisogels. These peptides impart high integrin affinity and selectivity towards either αvß3 or α5ß1 integrin subunits. Enzymatic conjugation of such bicyclic peptides to the PEG backbone enables the formulation of an aECM hydrogel that supports nerve growth. Furthermore, different proteolytic cleavable moieties are incorporated and compared to promote cell migration and proliferation, resulting in enhanced cell growth with different degradable peptide crosslinkers. Mouse fibroblasts and primary nerve cells from embryonic chick dorsal root ganglions (DRGs) show superior growth in bicyclic RGD peptide conjugated gels selective towards αvß3 or α5ß1, compared to monocyclic or linear RGD peptides, with a slight preference to αvß3 selective bicyclic peptides in the case of nerve growth. Synthetic Anisogels, modified with bicyclic RGD peptides and containing short aligned, magneto-responsive fibers, show oriented DRG outgrowth parallel to the fibers. This report shows the potential of PEG hydrogels coupled with bicyclic RGD peptides as an aECM model and paves the way for a new class of integrin selective biomolecules for cell growth and nerve regeneration.


Assuntos
Oligopeptídeos , Peptídeos , Animais , Hidrogéis , Camundongos , Polietilenoglicóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA