Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Mar Drugs ; 21(5)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37233495

RESUMO

Alginates extracted from two Moroccan brown seaweeds and their derivatives were investigated for their ability to induce phenolic metabolism in the roots and leaves of tomato seedlings. Sodium alginates (ALSM and ALCM) were extracted from the brown seaweeds Sargassum muticum and Cystoseira myriophylloides, respectively. Low-molecular-weight alginates (OASM and OACM) were obtained after radical hydrolysis of the native alginates. Elicitation was carried out by foliar spraying 20 mL of aqueous solutions (1 g/L) on 45-day-old tomato seedlings. Elicitor capacities were evaluated by monitoring phenylalanine ammonia-lyase (PAL) activity, polyphenols, and lignin production in the roots and leaves after 0, 12, 24, 48, and 72 h of treatment. The molecular weights (Mw) of the different fractions were 202 kDa for ALSM, 76 kDa for ALCM, 19 kDa for OACM, and 3 kDa for OASM. FTIR analysis revealed that the structures of OACM and OASM did not change after oxidative degradation of the native alginates. These molecules showed their differential capacity to induce natural defenses in tomato seedlings by increasing PAL activity and through the accumulation of polyphenol and lignin content in the leaves and roots. The oxidative alginates (OASM and OACM) exhibited an effective induction of the key enzyme of phenolic metabolism (PAL) compared to the alginate polymers (ALSM and ALCM). These results suggest that low-molecular-weight alginates may be good candidates for stimulating the natural defenses of plants.


Assuntos
Phaeophyceae , Sargassum , Alga Marinha , Sargassum/química , Alginatos/química , Lignina/farmacologia , Peso Molecular , Phaeophyceae/química , Alga Marinha/química , Estresse Oxidativo
2.
World J Microbiol Biotechnol ; 39(12): 338, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37821792

RESUMO

Nowadays, the exploitation of biopolymers in the industrial sector has become a trend. Chitosan is considered one of the most investigated biopolymers due to its abundance and antibacterial, antifungal, and antibiofilm activities. In this work, chitosan was chemically extracted from shrimp shells. Solutions of HCl 1 M, NaOH 4 M, and NaOH 15 M were used for the demineralization, deproteinization, and deacetylation process, respectively. The utilized methods of characterization (FTIR, 1 H NMR, 13 C NMR, and SEC-MALS) revealed that the obtained chitosan has a moderate degree of deacetylation and low molecular weight (DDA = 74% and Mw = 72.14 kDa). The microdilution method and inoculation of solid medium were carried out to assess the antibiofilm action of chitosan against Staphylococcus aureus, Pseudomonas aeruginosa, Enterococcus hirae, Escherichia coli, Rhizopus sp., and Aspergillus sp. which are known as foodborne microorganisms. Results showed that the produced chitosan at 1 g/L inhibits between 63.44 and 99.75% of the microbial biofilm depending on the tested strains. These promising results confirm the potential deployment of the obtained chitosan in the food industry as a replacement for synthetic antimicrobial agents.


Assuntos
Anti-Infecciosos , Quitosana , Animais , Quitosana/farmacologia , Quitosana/química , Hidróxido de Sódio , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Bactérias , Fungos , Crustáceos , Biopolímeros , Biofilmes , Testes de Sensibilidade Microbiana
3.
Mar Drugs ; 19(4)2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33810536

RESUMO

ß-chitin was isolated from marine waste, giant Humboldt squid Dosidicus gigas, and further converted to nanofibers by use of a collider machine under acidic conditions (pH 3). The FTIR, TGA, and NMR analysis confirmed the efficient extraction of ß-chitin. The SEM, TEM, and XRD characterization results verified that ß-chitin crystalline structure were maintained after mechanical treatment. The mean particle size of ß-chitin nanofibers was in the range between 10 and 15 nm, according to the TEM analysis. In addition, the ß-chitin nanofibers were converted into films by the simple solvent-casting and drying process at 60 °C. The obtained films had high lightness, which was evidenced by the CIELAB color test. Moreover, the films showed the medium swelling degree (250-290%) in aqueous solutions of different pH and good mechanical resistance in the range between 4 and 17 MPa, depending on film thickness. The results obtained in this work show that marine waste can be efficiently converted to biomaterial by use of mild extractive conditions and simple mechanical treatment, offering great potential for the future development of sustainable multifunctional materials for various industrial applications such as food packaging, agriculture, and/or wound dressing.


Assuntos
Materiais Biocompatíveis , Quitina/isolamento & purificação , Decapodiformes/metabolismo , Nanofibras , Resíduos , Animais , Configuração de Carboidratos , Quitina/química , Tamanho da Partícula , Propriedades de Superfície , Viscosidade
4.
Molecules ; 26(24)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34946559

RESUMO

This study investigated the biocomposite pectin films enriched with murta (Ugni molinae T.) seed polyphenolic extract and reinforced by chitin nanofiber. The structural, morphological, mechanical, barrier, colorimetric, and antioxidant activity of films were evaluated. The obtained data clearly demonstrated that the addition of murta seed extract and the high load of chitin nanofibers (50%) provided more cohesive and dense morphology of films and improved the mechanical resistance and water vapor barrier in comparison to the control pectin film. The antioxidant activity ranged between 71% and 86%, depending on the film formulation and concentration of chitin nanofibers. The presented results highlight the potential use of chitin nanofibers and murta seed extract in the pectin matrix to be applied in functional food coatings and packaging, as a sustainable solution.


Assuntos
Materiais Biocompatíveis/química , Quitina/química , Myrtaceae/química , Nanofibras/química , Pectinas/química , Extratos Vegetais/química , Materiais Biocompatíveis/isolamento & purificação , Embalagem de Alimentos , Tamanho da Partícula , Pectinas/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Sementes/química
5.
Mar Drugs ; 18(12)2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33256188

RESUMO

Fucoidans from Moroccan brown seaweed Bifurcaria bifurcata and Fucus spiralis were tested for their elicitor activity after their purification and complete characterization. The fucoidans of B. bifurcata (BBF) and of F. spiralis (FSF) were extracted and purified then characterized by infrared spectroscopy, proton nuclear magnetic resonance spectroscopy and size exclusion chromatography. The results show that BBF and FSF are mainly sulfated with 45.49 and 49.53% (w/w) sulfate, respectively. Analysis of neutral sugars determined by gas chromatography-mass spectrometry showed that FSF and BBF were mainly composed of 64% and 91% fucose and 20% and 6% galactose, respectively, with a few other sugars such as glucose (8% in FSF), rhamnose (1% in BBF) and mannose (8% in FSF and, 2% in BBF). The eliciting activity of these sulfated polysaccharides in stimulating the natural defenses of the date palm was evaluated through the activity of phenylalanine ammonia-lyase (PAL), and the increase in phenols and lignin content in the roots. The results obtained clearly show that the two fucoidans early and intensely stimulate the natural defenses of the date palm after 24 h of treatments. This remarkable elicitor effect seems to be linked to the sulfated groups compared to non-sulfate alginates extracted from the same algae. These results open promising perspectives for a biological control approach against date palm diseases.


Assuntos
Agentes de Controle Biológico/farmacologia , Fucus/metabolismo , Phoeniceae/efeitos dos fármacos , Doenças das Plantas/prevenção & controle , Raízes de Plantas/efeitos dos fármacos , Polissacarídeos/farmacologia , Alga Marinha/metabolismo , Agentes de Controle Biológico/isolamento & purificação , Lignina/metabolismo , Estrutura Molecular , Fenóis/metabolismo , Fenilalanina Amônia-Liase/metabolismo , Phoeniceae/metabolismo , Raízes de Plantas/metabolismo , Polissacarídeos/isolamento & purificação , Relação Estrutura-Atividade
6.
Molecules ; 25(1)2019 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-31905753

RESUMO

The use of polysaccharide-based materials presents an eco-friendly technological solution, by reducing dependence on fossil resources while reducing a product's carbon footprint, when compared to conventional plastic packaging materials. This review discusses the potential of polysaccharides as a raw material to produce multifunctional materials for food packaging applications. The covered areas include the recent innovations and properties of the polysaccharide-based materials. Emphasis is given to hemicelluloses, marine polysaccharides, and bacterial exopolysaccharides and their potential application in the latest trends of food packaging materials, including edible coatings, intelligent films, and thermo-insulated aerogel packaging.


Assuntos
Materiais Biocompatíveis , Embalagem de Alimentos , Conservação de Alimentos , Polissacarídeos , Alginatos/química , Materiais Biocompatíveis/química , Celulose/química , Quitosana/química , Embalagem de Alimentos/métodos , Conservação de Alimentos/métodos , Invenções , Estrutura Molecular , Polissacarídeos/química
7.
Int J Biol Macromol ; 276(Pt 1): 133767, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38986989

RESUMO

To address the increasing demand for sensitive and selective sample preparation methods for metal analysis; preconcentration of intended analyte from complex sample matrices before analysis is required to improve the performance of analysis instruments. In this study, we have engineered a sustainable and portable syringe-based hand-operable three-dimensionally (3D) printed sample pretreatment apparatus equipped with a replaceable bio-based thin- film metal sorbent. This device effectively addresses the challenges of sample matrix interference in metal analysis. A metal sorbent film composed of chitosan (CS) and polydopamine (PDA) leveraged the diverse functional groups in the CS/PDA matrix to significantly enhance the extraction efficiency for various metals. Our approach demonstrated excellent analytical performance, with coefficients of determination (R2) of 0.9982 for copper (Cu) and 0.996 for chromium (Cr). The method achieved low limits of detection (LOD) of 0.3 µg L-1 for Cr and 0.7 µg L-1 for Cu. Precision and practicality assessments using actual urine samples yielded satisfactory relative standard deviations (RSD%) ranging from of 1.6 %-8.5 % for both metals, indicating minimal interference from the sample matrix. Moreover, our approach exhibited robust performance even after seven consecutive extraction and desorption cycles, highlighting its sustainability and practical applicability for laboratory and on-site sample pretreatment.


Assuntos
Quitosana , Indóis , Polímeros , Impressão Tridimensional , Quitosana/química , Polímeros/química , Indóis/química , Cobre/química , Humanos , Limite de Detecção , Cromo/isolamento & purificação , Cromo/análise , Cromo/urina , Adsorção , Metais/química , Miniaturização
8.
Sci Rep ; 12(1): 7213, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35508533

RESUMO

Wound healing is a complex process and rapid healing necessitates a proper micro-environment. Therefore, design and fabrication of an efficacious wound dressing is an impressive innovation in the field of wound healing. The fabricated wound dressing in this scenario was designed using a combination of the appropriate coagulating and anti-bacterial materials like fibrinogen (as coagulating agent), nisin (as anti-bacterial agent), ethylenediaminetetraacetic acid (as anti-bacterial agent), and alginate (as wound healing agent). Biophysical characterization showed that the interaction of fibrinogen and alginate was associated with minor changes in the secondary structure of the protein. Conformational studies showed that the protein was structurally stable at 42 °C, is the maximum temperature of the infected wound. The properties of the hydrogel such as swelling, mechanical resistance, nisin release, antibacterial activity, cytotoxicity, gel porosity, and blood coagulation were assessed. The results showed a slow release for the nisin during 48 h. Antibacterial studies showed an inhibitory effect on the growth of Gram-negative and Gram-positive bacteria. The hydrogel was also capable to absorb a considerable amount of water and provide oxygenation as well as incorporation of the drug into its structure due to its sufficient porosity. Scanning electron microscopy showed pore sizes of about 14-198 µm in the hydrogel. Cell viability studies indicated high biocompatibility of the hydrogel. Blood coagulation test also confirmed the effectiveness of the synthesized hydrogel in accelerating the process of blood clot formation. In vivo studies showed higher rates of wound healing, re-epithelialization, and collagen deposition. According to the findings from in vitro as well as in vivo studies, the designed hydrogel can be considered as a novel attractive wound dressing after further prerequisite assessments.


Assuntos
Hidrogéis , Nisina , Alginatos/química , Alginatos/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Materiais Biocompatíveis/farmacologia , Fibrinogênio/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Nisina/farmacologia , Cicatrização
9.
Carbohydr Polym ; 277: 118820, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34893237

RESUMO

In this present work, we developed a phenol grafted polyglucuronic acid (PGU) and investigated the usefulness in tissue engineering field by using this derivative as a bioink component allowing gelation in extrusion-based 3D bioprinting. The PGU derivative was obtained by conjugating with tyramine, and the aqueous solution of the derivative was curable through a horseradish peroxidase (HRP)-catalyzed reaction. From 2.0 w/v% solution of the derivative containing 5 U/mL HRP, hydrogel constructs were successfully obtained with a good shape fidelity to blueprints. Mouse fibroblasts and human hepatoma cells enclosed in the printed constructs showed about 95% viability the day after printing and survived for 11 days of study without a remarkable decrease in viability. These results demonstrate the great potential of the PGU derivative in tissue engineering field especially as an ink component of extrusion-based 3D bioprinting.


Assuntos
Bioimpressão , Ácido Glucurônico/química , Tinta , Polímeros/química , Animais , Linhagem Celular , Ácido Glucurônico/síntese química , Ácido Glucurônico/isolamento & purificação , Camundongos , Estrutura Molecular , Polímeros/síntese química , Polímeros/isolamento & purificação
10.
Polymers (Basel) ; 13(19)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34641160

RESUMO

The intensive development of micro- and nanotechnologies in recent years has offered a wide horizon of new possibilities for drug delivery in dentistry. The use of polymeric drug carriers turned out to be a very successful technique for formulating micro- and nanoparticles with controlled or targeted drug release in the oral cavity. Such innovative strategies have the potential to provide an improved therapeutic approach to prevention and treatment of various oral diseases not only for adults, but also in the pediatric dental practice. Due to their biocompatibility, biotolerance and biodegradability, naturally occurring polysaccharides like chitosan, alginate, pectin, dextran, starch, etc., are among the most preferred materials for preparation of micro- and nano-devices for drug delivery, offering simple particle-forming characteristics and easily tunable properties of the formulated structures. Their low immunogenicity and low toxicity provide an advantage over most synthetic polymers for the development of pediatric formulations. This review is focused on micro- and nanoscale polysaccharide biomaterials as dental drug carriers, with an emphasis on their potential application in pediatric dentistry.

11.
Curr Pharm Des ; 25(11): 1187-1199, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31465279

RESUMO

BACKGROUND: Recently, researchers have given more and more consideration to natural polysaccharides thanks to their huge properties such as stability, biodegradability and biocompatibility for food and therapeutics applications. METHODS: a number of enzymatic and chemical processes were performed to generate bioactive molecules, such as low molecular weight fractions and oligosaccharides derivatives from algal polysaccharides. RESULTS: These considerable characteristics allow algal polysaccharides and their derivatives such as low molecular weight polymers and oligosaccharides structures to have great potential to be used in lots of domains, such as pharmaceutics and agriculture etc. Conclusion: The present review describes the mains polysaccharides structures from Algae and focuses on the currents agricultural (fertilizer, bio-elicitor, stimulators, signaling molecules and activators) and pharmaceutical (wound dressing, tissues engineering and drugs delivery) applications by using polysaccharides and/or their oligosaccharides derivatives obtained by chemical, physical and enzymatic processes.


Assuntos
Clorófitas/química , Phaeophyceae/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Rodófitas/química , Agricultura , Sistemas de Liberação de Medicamentos , Fertilizantes , Polímeros , Engenharia Tecidual , Cicatrização
12.
Carbohydr Polym ; 111: 707-13, 2014 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-25037406

RESUMO

Endodextranase D8144 from Penicillium sp. (EC 3.2.1.2.) was immobilized on an epoxy-activated monolithic Convective Interaction Media (CIM(®)) disk in order to produce isomaltooligosaccharides (IMOS) from Dextran T40 in a continuous IMmobilized Enzymes Reactor (IMER). Enzymatic parameters and structure of IMOS were studied for free and immobilized enzymes. The immobilization efficiency of endodextranase D8144 was about 15.9% (w/w) and the real specific activity was close to 6.5 U mg enz(-1). The Km values (4.8 ± 0.2 g L(-1)) for free and immobilized enzymes were the same, showing the absence of diffusional limitation. Moreover, specific patterns of DPs (Degrees of Polymerization) distributions were observed during the enzymatic hydrolysis by HPAEC-PAD (High Pressure Anion Exchange Chromatography-Pulsed Amperometric Detection). Thus, sought-after sizes of IMOS (DPs 8-10) were generated all over the hydrolysis. Finally, the results showed the high stability of this IMER since a relative enzymatic activity about 78% was measured after 5400 volumes column.


Assuntos
Dextranase/metabolismo , Dextranos/metabolismo , Enzimas Imobilizadas/metabolismo , Compostos de Epóxi/química , Metilmetacrilatos/química , Oligossacarídeos/metabolismo , Penicillium/enzimologia , Dextranase/química , Enzimas Imobilizadas/química , Desenho de Equipamento , Hidrólise , Microbiologia Industrial/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA