Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Food Chem Toxicol ; 167: 113303, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35850400

RESUMO

In this research, gold-nicel supported on activated carbon (AC) nanoadsorbent (AuNi@AC) synthesized by following a series of physicochemical procedures was prepared for the removal of Maxilon Blue 5G (MB) which is a cationic textile dye. Experimental studies based on parameters specifically pH, contact time, nano catalytic adsorbent particle, initial MB dye concentration and temperature effect were conducted in aqueous solutions in a batch system. AuNi@AC nanoadsorbents (NAs) reached the equilibrium in 30 min under optimum conditions in adsorption of the dye. The pseudo-first, second-order, and intra-particle diffusion models were tested to evaluate a the experimental results. Adsorption kinetics were found to be represented by the pseudo-second-order model, and the maximum adsorption capacity (qmax.) was calculated to be 542.90 mg/g (or 2.041 mmol/g). The synthesized magnetic AuNi@AC nanoadsorbent showed a high-efficiency reusability effect of about 64% after five reuse runs. Also, thermodynamic function parameters such as activation energy (Ea), Gibbs free energy (ΔG *), and entropy (ΔS *) were investigated in the sorption study. After all evaluation of data, it was concluded that the novel AuNi@AC nanoadsorbent could be considered as an effective support material for the removal of various organic pollutants in aquation solution especially for the removal of MB.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Compostos Azo , Carvão Vegetal , Concentração de Íons de Hidrogênio , Cinética , Azul de Metileno , Termodinâmica , Purificação da Água/métodos
2.
Sci Rep ; 9(1): 10850, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31350451

RESUMO

Herein, multiwalled carbon nanotube-based Fe3O4 nano-adsorbents (Fe3O4@MWCNT) were synthesized by ultrasonic reduction method. The synthesized nano-adsorbent (Fe3O4@MWCNT) exhibited efficient sonocatalytic activity to remove Maxilon Blue 5G, a textile dye, and present in a cationic form, in aqueous solution under ultrasonic irradiation. The magnetic nano-adsorbent particles were characterized by high-resolution transmission electron microscopy (HR-TEM), transmission electron microscopy (TEM), Raman spectroscopy and X-ray diffraction (XRD). Some important parameters such as nano-adsorbent dosage, solution pH, initial dye and H2O2 concentration, reaction time, ultrasonic power and temperature were tested to determine the optimum conditions for the elimination of Maxilon Blue 5G dye. The reusability results showed that Fe3O4@MWCNT nano-adsorbent has a decrease of about 32.15% in the removal efficiency of Maxilon Blue 5G under ultrasonic irradiation after six times reuse. Additionally, in order to reveal the sufficient kinetic explanation, various experiments were performed at different temperatures and testing three kinetic models like the pseudo-first-order, pseudo-second-order and intraparticle diffusion for removal adsorption process of Maxilon Blue 5G using Fe3O4@MWCNT nano-adsorbent. The experimental kinetic results revealed that the adsorption process of Maxilon Blue 5G in the aquatic mediums using sono-Fenton method was found to be compatible with the intraparticle diffusion. Using kinetic models and studies, some activation parameters like enthalpy, entropy and Gibbs free energy for the adsorption process were calculated. The activation parameters indicated that Fe3O4@MWCNT nano-adsorbent could be used as an effective adsorbent for the removal of Maxilon Blue 5G as a textile dye and the adsorption process of Maxilon Blue 5G with Fe3O4@MWCNT nano-adsorbent is spontaneous.

3.
J Hazard Mater ; 134(1-3): 211-9, 2006 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-16343759

RESUMO

The adsorption of PAM onto sepiolite from aqueous solutions has been investigated systematically as a function of some parameters such as calcination temperature of sepiolite, pH, ionic strength and temperature. The adsorption of cationic polyacrylamide (PAM) increases with pH from 5.50 to 11.00, temperature from 25 to 55 degrees C and ionic strength from 0 to 0.1molL(-1). The sepiolite sample calcined at 200 degrees C has a higher adsorption capacity than the other calcined samples. Adsorption isotherms of PAM onto sepiolite have been determined and correlated with common isotherm equations such as Langmuir and Freundlich isotherm models. The Langmuir isotherm model appeared to fit the isotherm data better than the Freundlich isotherm model. The physical properties of this adsorbent are consistent with the parameters obtained from the isotherm equations. The zeta potentials of sepiolite suspensions have been measured in aqueous solutions of NaCl and different PAM concentrations and pH. From the experimental results: (i) pH strongly alters the zeta potential of sepiolite, (ii) sepiolite has an isoelectric point at about pH 6.6 in water and about pH 8 in 250mgL(-1) PAM concentration, (iii) PAM changes the interface charge from negative to positive for sepiolite. Effect of temperature on adsorption has been quantified by calculating various thermodynamic parameters such as Gibbs free energy, enthalpy and entropy. The dimensionless separation factor (R(L)) has shown that sepiolite can be used for adsorption of PAM from aqueous solutions.


Assuntos
Resinas Acrílicas/química , Silicatos de Magnésio/química , Adsorção , Cátions/química , Fenômenos Químicos , Físico-Química , Concentração de Íons de Hidrogênio , Estrutura Molecular , Concentração Osmolar , Temperatura , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA