Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 10850, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31350451

RESUMO

Herein, multiwalled carbon nanotube-based Fe3O4 nano-adsorbents (Fe3O4@MWCNT) were synthesized by ultrasonic reduction method. The synthesized nano-adsorbent (Fe3O4@MWCNT) exhibited efficient sonocatalytic activity to remove Maxilon Blue 5G, a textile dye, and present in a cationic form, in aqueous solution under ultrasonic irradiation. The magnetic nano-adsorbent particles were characterized by high-resolution transmission electron microscopy (HR-TEM), transmission electron microscopy (TEM), Raman spectroscopy and X-ray diffraction (XRD). Some important parameters such as nano-adsorbent dosage, solution pH, initial dye and H2O2 concentration, reaction time, ultrasonic power and temperature were tested to determine the optimum conditions for the elimination of Maxilon Blue 5G dye. The reusability results showed that Fe3O4@MWCNT nano-adsorbent has a decrease of about 32.15% in the removal efficiency of Maxilon Blue 5G under ultrasonic irradiation after six times reuse. Additionally, in order to reveal the sufficient kinetic explanation, various experiments were performed at different temperatures and testing three kinetic models like the pseudo-first-order, pseudo-second-order and intraparticle diffusion for removal adsorption process of Maxilon Blue 5G using Fe3O4@MWCNT nano-adsorbent. The experimental kinetic results revealed that the adsorption process of Maxilon Blue 5G in the aquatic mediums using sono-Fenton method was found to be compatible with the intraparticle diffusion. Using kinetic models and studies, some activation parameters like enthalpy, entropy and Gibbs free energy for the adsorption process were calculated. The activation parameters indicated that Fe3O4@MWCNT nano-adsorbent could be used as an effective adsorbent for the removal of Maxilon Blue 5G as a textile dye and the adsorption process of Maxilon Blue 5G with Fe3O4@MWCNT nano-adsorbent is spontaneous.

2.
Sci Rep ; 9(1): 12258, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31439896

RESUMO

The ultimate aim of this study is to produce a composite of bimetallic platinum-cobalt nanoparticles and reduced graphene oxide (Pt-Co@rGO) based biosensor for the detection of ascorbic acid (AA), dopamine (DA) and uric acid (UA). Those are biologically important molecules with the key functions for the human body. Pt-Co@rGO was synthesized using a microwave-assisted technique and utilized for the production of a highly sensitive and stable electrochemical biosensor. Detailed spectral XPS and Raman analysis, XRD, and TEM/HR-TEM characterization were also studied. Due to the superior activity and excellent conductivity of rGO, well-separated oxidation peaks of these biomolecules is proven by DPV (differential pulse voltammetry) and CV (cyclic voltammetry) measurements. The prepared Pt-Co@rGO-based biosensor showed high electrochemical activity, a broad linear response, high sensitivity, and acceptable limit of detection values for individual and simultaneous determination of AA, DA, and UA, under optimized conditions. The linear range of Pt-Co@rGO was found to be 170-200; 35-1500 and 5-800 µM for AA, DA, and UA, respectively. Moreover, the detection limit of the prepared composite was calculated as 0.345; 0.051; 0.172 µM for AA, DA, and UA, respectively. In the field of electrochemical biosensors, Pt-Co@rGO based sensor is highly promising due to its superior sensitivity and good selectivity properties.


Assuntos
Ligas/química , Ácido Ascórbico/análise , Cobalto/química , Dopamina/análise , Técnicas Eletroquímicas , Grafite/química , Platina/química , Ácido Úrico/análise , Oxirredução
3.
Mater Sci Eng C Mater Biol Appl ; 99: 248-254, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30889697

RESUMO

A novel multiwalled carbon nanotube (MWCNT) based sensor was fabricated as a highly precise and stable electrochemical sensor. The synthesized sensor which consists of ZnNi bimetallic nanoalloy called the ZnNi NPs@f-MWCNT sensor, have been used for the simultaneous detection of uric acid (UA), dopamine (DA) and ascorbic acid (AA). The ZnNi NPs@f-MWCNT sensor obtained based on the microwave irradiation process, and its characterization was performed by using several physical techniques such as XRD, XPS, TEM, Raman, etc. The characterization showed that this sensor has excellent properties such as rich pore channels, excellent structural durability, and large surface area. These properties facilitated mass transfer and electron conductions. It was observed that the obtained sensor gave high electrochemical activity and wide linear responses (0.3-1.1 mM AA, 0.2-1.2 mM DA, 0.2-1.1 mM UA) in the detection of uric acid (UA), dopamine (DA) and ascorbic acid (AA). In addition to these properties, it has been found that the sensor has excellent anti-interferents properties towards AlCl3, KCl3, glucose, etc. and ZnNi NPs@f-MWCNT sensor was further applied to determine uric acid (UA), dopamine (DA) and ascorbic acid (AA) in real samples.


Assuntos
Ácido Ascórbico/análise , Técnicas Biossensoriais/métodos , Dopamina/análise , Nanopartículas/química , Nanotubos de Carbono/química , Ácido Úrico/análise , Ligas/química , Técnicas Eletroquímicas , Nanopartículas/ultraestrutura , Nanotubos de Carbono/ultraestrutura , Níquel/química , Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA