Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1107, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321061

RESUMO

Hierarchical compartmentalization, a hallmark of both primitive and modern cells, enables the concentration and isolation of biomolecules, and facilitates spatial organization of biochemical reactions. Coacervate-based compartments can sequester and recruit a large variety of molecules, making it an attractive protocell model. In this work, we report the spontaneous formation of core-shell cell-sized coacervate-based compartments driven by spontaneous evaporation of a sessile droplet on a thin-oil-coated substrate. Our analysis reveals that such far-from-equilibrium architectures arise from multiple, coupled segregative and associative liquid-liquid phase separation, and are stabilized by stagnation points within the evaporating droplet. The formation of stagnation points results from convective capillary flows induced by the maximum evaporation rate at the liquid-liquid-air contact line. This work provides valuable insights into the spontaneous formation and maintenance of hierarchical compartments under non-equilibrium conditions, offering a glimpse into the real-life scenario.


Assuntos
Células Artificiais , Fenômenos Físicos , Separação de Fases , Tamanho Celular , Veias
2.
ACS Nano ; 17(17): 16787-16797, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37639562

RESUMO

An important goal for bottom-up synthetic biology is to construct tissue-like structures from artificial cells. The key is the ability to control the assembly of the individual artificial cells. Unlike most methods resorting to external fields or sophisticated devices, inspired by the hanging drop method used for culturing spheroids of biological cells, we employ a capillary-driven approach to assemble giant unilamellar vesicles (GUVs)-based protocells into colonized prototissue arrays by means of a coverslip with patterned wettability. By spatially confining and controllably merging a mixed population of lipid-coated double-emulsion droplets that hang on a water/oil interface, an array of synthetic tissue-like constructs can be obtained. Each prototissue module in the array comprises multiple tightly packed droplet compartments where interfacial lipid bilayers are self-assembled at the interfaces both between two neighboring droplets and between the droplet and the external aqueous environment. The number, shape, and composition of the interconnected droplet compartments can be precisely controlled. Each prototissue module functions as a processer, in which fast signal transports of molecules via cell-cell and cell-environment communications have been demonstrated by molecular diffusions and cascade enzyme reactions, exhibiting the ability to be used as biochemical sensing and microreactor arrays. Our work provides a simple yet scalable and programmable method to form arrays of prototissues for synthetic biology, tissue engineering, and high-throughput assays.


Assuntos
Células Artificiais , Transporte Biológico , Comunicação Celular , Difusão , Ensaios de Triagem em Larga Escala , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA