Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(4): 1895-1901, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31932451

RESUMO

Stem cells are capable of sensing and processing environmental inputs, converting this information to output a specific cell lineage through signaling cascades. Despite the combinatorial nature of mechanical, thermal, and biochemical signals, these stimuli have typically been decoupled and applied independently, requiring continuous regulation by controlling units. We employ a programmable polymer actuator sheet to autonomously synchronize thermal and mechanical signals applied to mesenchymal stem cells (MSCs). Using a grid on its underside, the shape change of polymer sheet, as well as cell morphology, calcium (Ca2+) influx, and focal adhesion assembly, could be visualized and quantified. This paper gives compelling evidence that the temperature sensing and mechanosensing of MSCs are interconnected via intracellular Ca2+ Up-regulated Ca2+ levels lead to a remarkable alteration of histone H3K9 acetylation and activation of osteogenic related genes. The interplay of physical, thermal, and biochemical signaling was utilized to accelerate the cell differentiation toward osteogenic lineage. The approach of programmable bioinstructivity provides a fundamental principle for functional biomaterials exhibiting multifaceted stimuli on differentiation programs. Technological impact is expected in the tissue engineering of periosteum for treating bone defects.


Assuntos
Tecido Adiposo/citologia , Cálcio/metabolismo , Osteogênese , Polímeros/química , Células-Tronco/citologia , Estresse Mecânico , Temperatura , Tecido Adiposo/metabolismo , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Humanos , Mecanotransdução Celular , Células-Tronco/metabolismo , Engenharia Tecidual
2.
Biomacromolecules ; 18(11): 3819-3833, 2017 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-28954190

RESUMO

The rational design of a polyplex gene carrier aims to balance maximal effectiveness of nucleic acid transfection into cells with minimal adverse effects. Depsipeptide blocks with an Mn ∼ 5 kDa exhibiting strong physical interactions were conjugated with PEI moieties (2.5 or 10 kDa) to di- and triblock copolymers. Upon nanoparticle formation and complexation with DNA, the resulting polyplexes (sizes typically 60-150 nm) showed remarkable stability compared to PEI-only or lipoplex and facilitated efficient gene delivery. Intracellular trafficking was visualized by observing fluorescence-labeled pDNA and highlighted the effective cytoplasmic uptake of polyplexes and release of DNA to the perinuclear space. Specifically, a triblock copolymer with a middle depsipeptide block and two 10 kDa PEI swallowtail structures mediated the highest levels of transgenic VEGF secretion in mesenchymal stem cells with low cytotoxicity. These nanocarriers form the basis for a delivery platform technology, especially for gene transfer to primary human cells.


Assuntos
DNA/genética , Depsipeptídeos/química , Técnicas de Transferência de Genes , Nanopartículas/química , Sobrevivência Celular/genética , DNA/química , Depsipeptídeos/genética , Humanos , Plasmídeos/química , Plasmídeos/genética , Polietilenoglicóis/química , Polietilenoimina/química , Cultura Primária de Células , Transfecção/métodos
3.
Virol Sin ; 39(2): 290-300, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38331038

RESUMO

Coxsackievirus B3 (CVB3) is the pathogen causing hand, foot and mouth disease (HFMD), which manifests across a spectrum of clinical severity from mild to severe. However, CVB3-infected mouse models mainly demonstrate viral myocarditis and pancreatitis, failing to replicate human HFMD symptoms. Although several enteroviruses have been evaluated in Syrian hamsters and rhesus monkeys, there is no comprehensive data on CVB3. In this study, we have first tested the susceptibility of Syrian hamsters to CVB3 infection via different routes. The results showed that Syrian hamsters were successfully infected with CVB3 by intraperitoneal injection or nasal drip, leading to nasopharyngeal colonization, acute severe pathological injury, and typical HFMD symptoms. Notably, the nasal drip group exhibited a longer viral excretion cycle and more severe pathological damage. In the subsequent study, rhesus monkeys infected with CVB3 through nasal drips also presented signs of HFMD symptoms, viral excretion, serum antibody conversion, viral nucleic acids and antigens, and the specific organ damages, particularly in the heart. Surprisingly, there were no significant differences in myocardial enzyme levels, and the clinical symptoms resembled those often associated with common, mild infections. In summary, the study successfully developed severe Syrian hamsters and mild rhesus monkey models for CVB3-induced HFMD. These models could serve as a basis for understanding the disease pathogenesis, conducting pre-trial prevention and evaluation, and implementing post-exposure intervention.


Assuntos
Modelos Animais de Doenças , Enterovirus Humano B , Doença de Mão, Pé e Boca , Macaca mulatta , Mesocricetus , Animais , Doença de Mão, Pé e Boca/virologia , Doença de Mão, Pé e Boca/patologia , Enterovirus Humano B/patogenicidade , Anticorpos Antivirais/sangue , Cricetinae , Feminino , Eliminação de Partículas Virais , Nasofaringe/virologia , Masculino
4.
ACS Appl Mater Interfaces ; 13(9): 10748-10759, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33594879

RESUMO

High levels of reactive oxygen species (ROS) during stem cell expansion often lead to replicative senescence. Here, a polydopamine (PDA)-coated substrate was used to scavenge extracellular ROS for mesenchymal stem cell (MSC) expansion. The PDA-coated substrate could reduce the oxidative stress and mitochondrial damage in replicative senescent MSCs. The expression of senescence-associated ß-galactosidase of MSCs from three human donors (both bone marrow- and adipose tissue-derived) was suppressed on PDA. The MSCs on the PDA-coated substrate showed a lower level of interleukin 6 (IL-6), one of the senescence-associated inflammatory components. Cellular senescence-specific genes, such as p53 and p21, were downregulated on the PDA-coated substrate, while the stemness-related gene, OCT4, was upregulated. The PDA-coated substrate strongly promoted the proliferation rate of MSCs, while the stem cell character and differentiation potential were retained. Large-scale expansion of stem cells would greatly benefit from the PDA-coated substrate.


Assuntos
Técnicas de Cultura de Células/métodos , Materiais Revestidos Biocompatíveis/farmacologia , Indóis/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Polímeros/farmacologia , Técnicas de Cultura de Células/instrumentação , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-6/metabolismo , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , beta-Galactosidase/metabolismo
5.
J Control Release ; 242: 71-79, 2016 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-27498020

RESUMO

Polycationic micelles have shown advantageous properties as nucleic acid delivery vectors both in vitro and in vivo. In contrast to polycationic micelles reported so far, we designed particles integrating a sufficient nucleic acid condensation capability by polycationic polyethylenimine (PEI) segments as well as only a mild cytotoxic behavior. The micelles composed of a hydrophobic oligoester core with glycolide units resulting in fast degradation after cellular internalization in combination with PEG moieties acting as shielding agents. By grafting branched 25kDa polyethylenimine (PEI25) and poly(ethylene glycol) (PEG) on poly[(ε-caprolactone)-co-glycolide] (CG), amphiphilic PEI-CG-PEI and PEG-CG block copolymers were used to form a series of micelles via self-assembly of PEI-CG-PEI or co-assembly of both copolymers for DNA and siRNA delivery. This modular system enabled a systematic investigation of different parameters and their synergetic effects as different functions were introduced. The polyplex formation and serum stability, cytotoxicity, and transfection activity could be tailored by changing the CG chain length in PEI-based copolymer, incorporating PEG-CG, and varying the N/P ratio. All micelle-based polyplex compositions showed high DNA transfection activity according to reporter gene-expression and an exceptionally high knockdown in siRNA delivery experiments. Remarkably, the GFP expression of >99% cells was successfully knocked down by micelle-mediated siRNA interference, resulting in a decrease of two orders of magnitude in fluorescence intensity. Incorporation of PEG-CG in the micelles reduced the PEI-related cytotoxicity, and markedly enhanced the serum stability of both DNA and siRNA polyplexes. Compared with homo-PEI25, these micelles showed several advantages including the lower toxicity, higher siRNA transfection efficiency and higher polyplex stability in the presence of serum. This study therefore provides an effective approach to tune the structure, property and function of polycationic micelles for efficient DNA and siRNA delivery, which could contribute to the design and development of novel non-viral transfection vectors with superb functionality.


Assuntos
DNA/administração & dosagem , Técnicas de Transferência de Genes , Polímeros/química , RNA Interferente Pequeno/administração & dosagem , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Vetores Genéticos , Proteínas de Fluorescência Verde/genética , Humanos , Micelas , Poliaminas/química , Polieletrólitos , Poliésteres/química , Polietilenoglicóis/química , Polietilenoimina/química , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA