Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 216(Pt 2): 114400, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36265604

RESUMO

Biowaste, produced from nature, is preferred to be a good source of carbon and ligninolytic machinery for many microorganisms. They are complex biopolymers composed of lignin, cellulose, and hemicellulose traces. This biomass can be depolymerized to its nano-dimensions to gain exceptional properties useful in the field of cosmetics, pharmaceuticals, high-strength materials, etc. Nano-sized biomass derivatives overcome the inherent drawbacks of the parent material and offer promises as a potential material for a wide range of applications with their unique traits such as low-toxicity, biocompatibility, biodegradability and environmentally friendly nature with versatility. This review focuses on the production of value-added products feasible from nanocellulose, nano lignin, and xylan nanoparticles which is quite a novel study of its kind. Dawn of nanotechnology has converted bio waste by-products (hemicellulose and lignin) into useful precursors for many commercial products. Nano-cellulose has been employed in the fields of electronics, cosmetics, drug delivery, scaffolds, fillers, packaging, and engineering structures. Xylan nanoparticles and nano lignin have numerous applications as stabilizers, additives, textiles, adhesives, emulsifiers, and prodrugs for many polyphenols with an encapsulation efficiency of 50%. This study will support the potential development of composites for emerging applications in all aspects of interest and open up novel paths for multifunctional biomaterials in nano-dimensions for cosmetic, drug carrier, and clinical applications.


Assuntos
Lignina , Xilanos , Lignina/química , Celulose/química , Biomassa
2.
Bioresour Technol ; 344(Pt A): 126171, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34695586

RESUMO

The need to develop sustainable alternatives for pretreatment and hydrolysis of lignocellulosic biomass (LCB) is a massive concern in the industrial sector today. Breaking down of LCB yields sugars and fuel in the bulk scale. If explored under nanotechnology, LCB can be refined to yield high-performance fuel sources. The toxicity and cost of conventional methods can be reduced by applying nanoparticles (NPs) in refining LCB. Immobilization of enzymes onto NPs or used in conjugation with nanomaterials would instill specific and eco-friendly options for hydrolyzing LCB. Nanomaterials increase the proficiency, reusability, and stability of enzymes. Notably, magnetic NPs have bagged their place in the downstream processing of LCB effluents due to their efficient separation and cost-effectiveness. The current review highlights the role of nanotechnology and its particles in refining LCB into various commercial precursors and value-added products. The relationship between nanotechnology and LCB refinery is portrayed effectively in the present study.


Assuntos
Biocombustíveis , Lignina , Biomassa , Hidrólise , Nanotecnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA