Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 134(12): 124901, 2011 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-21456697

RESUMO

A semimicroscopic derivation is presented of equations of motion for the density and the flow velocity of concentrated systems of entangled polymers. The essential ingredient is the transient force that results from perturbations of overlapping polymers due to flow. A Smoluchowski equation is derived that includes these transient forces. From this, an equation of motion for the polymer number density is obtained, in which body forces couple the evolution of the polymer density to the local velocity field. Using a semimicroscopic Ansatz for the dynamics of the number of entanglements between overlapping polymers, and for the perturbations of the pair-correlation function due to flow, body forces are calculated for nonuniform systems where the density as well as the shear rate varies with position. Explicit expressions are derived for the shear viscosity and normal forces, as well as for nonlocal contributions to the body force, such as the shear-curvature viscosity. A contribution to the equation of motion for the density is found that describes mass transport due to spatial variation of the shear rate. The two coupled equations of motion for the density and flow velocity predict flow instabilities that will be discussed in more detail in a forthcoming publication.


Assuntos
Polímeros/química , Hidrodinâmica , Modelos Químicos , Movimento (Física) , Viscosidade
2.
Dent Mater ; 37(1): 113-119, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33190860

RESUMO

OBJECTIVES: The purpose of this study was to develop a new device that can improve the effect of desensitizer using shockwaves and to verify its efficacy. METHODS: A micro-shockwave generator was developed using a piezoelectric actuator (PIA-1000, piezosystem jena GmbH, Jena, Germany), an Arduino Uno microcontroller (Arduino, Torino, Italy), and a high voltage pulser (HVP-1000, piezosystem jena GmbH) at 700 V (400 A) and 100 µs. The occlusal surfaces of 20 extracted human upper and lower third molars without caries or restoration were reduced to expose the occlusal dentin, and the prepared occlusal surfaces were acid-etched with 32% phosphoric acid to remove the smear layer. The tooth specimens were connected to a fluid flow measurement instrument (nanoFlow, IB SYSTEMS, Seoul, Korea), permeability through dentin via dentinal fluid flow (DFF) was measured for 300 s, and the average DFF rate (Baseline DFF rate) was calculated. A desensitizer (SuperSeal, Phoenix Dental, Fenton, MI, USA) was applied to the acid-etched occlusal dentin surface of 10 randomly selected tooth specimens, left for 10 s, and rubbed with a microbrush for 30 s (Group 1). For the remaining teeth, the desensitizer was applied, and a shockwave (100 µm stroke, 10,000 G) was applied for 10 s (2 shots/s) and rubbed with a microbrush for 30 s (Group 2). After desensitizer application, subsequent DFF was measured for 600 s, and the average DFF rate was calculated (post-application DFF rate). DFF was continuously measured in real-time at 25 ±â€¯0.5 ℃ under a hydrostatic pressure of 25 cm. The percentage reduction in DFF rate after desensitizer application (with or without shockwave) was calculated with respect to baseline DFF rate. Data were analyzed with independent t-test (α = 0.05). RESULTS: For all tooth specimens, DFF rate decreased after desensitizer application irrespective of the presence of shockwaves. The percentage reduction in DFF rate of SuperSeal with shockwave (Group 2) was 42.8 ±â€¯19.0%, which was significantly higher than the 26.2 ±â€¯13.6% of the SuperSeal only group (Group 1) (p < 0.05). SIGNIFICANCE: Measurement of DFF change in real-time shows that shockwaves can help reduce dentin permeability beyond that SuperSeal dentin desensitizer produced alone.


Assuntos
Sensibilidade da Dentina , Camada de Esfregaço , Dentina , Permeabilidade da Dentina , Sensibilidade da Dentina/tratamento farmacológico , Humanos , Microscopia Eletrônica de Varredura
3.
Langmuir ; 26(13): 10593-9, 2010 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-20433147

RESUMO

There is increasing interest in the use of viruses as model systems for fundamental research and as templates for nanomaterials. In this work, the rodlike fd virus was subjected to chemical modifications targeting different solvent-exposed functional groups in order to tune its surface properties, especially reversing the surface charge from negative to positive. The carboxyl groups of fd were coupled with different kinds of organic amines by carbodiimide chemistry, resulting in modified viruses that are positively charged over a wide range of pH. Care was taken to minimize intervirus cross linking, which often occurs because of such modifications. The surface amino groups were also grafted with poly(ethylene glycol) (PEG) end-functionalized with an active succinimidyl ester in order to introduce a steric stabilization effect. By combining charge reversal with PEG grafting, a reversible attraction between positively and negatively charged PEG-grafted fd viruses could be realized, which was tuned by the ionic strength of the solution. In addition, a charge-reversed fd virus forms only a pure nematic phase in contrast to the cholesteric phase of the wild type. These modified viruses might be used as model systems in soft condensed matter physics, for example, in the study of polyelectrolyte complexes or lyotropic liquid-crystalline phase behavior.


Assuntos
Vírus/química , Eletroforese , Eletroforese em Gel de Poliacrilamida , Ésteres/química , Ponto Isoelétrico , Modelos Químicos , Nanoestruturas/química , Polietilenoglicóis/química , Espalhamento de Radiação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Propriedades de Superfície
4.
Dent Mater ; 29(12): 1236-43, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24135165

RESUMO

OBJECTIVES: The purpose of this study was to validate a new method to investigate the polymerization shrinkage vectors of composite during light curing and to evaluate the overall utility and significance of the technique. METHODS: An optical instrument was developed to measure the location and direction of the polymerization shrinkage strain vectors of dental composite during light curing using a particle tracking method with computer vision. The measurement system consisted of a CCD color camera, a lens and a filter, and software for multi-particle tracking. A universal hybrid composite (Z250, 3M ESPE, St. Paul MN, USA) was molded into thin disk-shaped specimens (un-bonded and bonded) or filled into a cavity within a tooth slab (bonded). The composite surface was coated with fluorescent particles prior to light curing. The images of the fluorescent particles were stored at 2 frames/s for 10 min, and the movements of the particles on the composite surface were tracked with computer vision during curing. The polymerization shrinkage strain vectors as a function of time and location were analyzed. The volume shrinkage of the composite was also measured for comparison. RESULTS: The linear and volume shrinkage of the composite at 10 min were 0.75 (0.12)% and 2.26 (0.18)%, respectively. The polymerization shrinkage vectors were directed toward the center of the specimen and were isotropic in all directions when the composite was allowed to shrinkage freely without bonding. In contrast, the shrinkage vectors were directed toward the bonding surface and were anisotropic when the composite was bonded to a fixed wall. The regional displacement vectors of composite in a tooth cavity were dependent on the location, depth and time. SIGNIFICANCE: The new instrument was able to measure the regional linear shrinkage strain vectors over an entire surface of a composite specimen as a function of time and location. Therefore, this instrument can be used to characterize the shrinkage behaviors for a wide range of commercial and experimental visible-light-cure materials in relation to the composition, boundary condition and cavity geometry.


Assuntos
Resinas Compostas , Processos Fotoquímicos , Polimerização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA