Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nanomedicine ; 37: 102417, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34171469

RESUMO

Hypertension is a chronic condition that requires lifelong therapeutic management. Strict adherence to drug administration timing improves efficacy, while poor adherence leads to safety concerns. In light of these challenges, we present a nanofluidic technology that enables long-acting drug delivery with tunable timing of drug administration using buried gate electrodes in nanochannels. We developed a poly(ethylene glycol) methyl ether-block-poly(ε-caprolactone) (PEG-PCL)-based micellar formulation of amlodipine besylate, a calcium channel blocker for hypertension treatment. The electrostatically charged PEG-PCL micellar formulation enhanced drug solubility and rendered amlodipine responsive to electrostatic release gating in nanochannels for sustained release at clinically relevant therapeutic dose. Using a low-power (<3 VDC) gating potential, we demonstrated tunable release of amlodipine-loaded micelles. Additionally, we showed that the released drug maintained biological activity via calcium ion blockade in vitro. This study represents a proof of concept for the potential applicability of our strategy for chronotherapeutic management of hypertension.


Assuntos
Anlodipino/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Hipertensão/tratamento farmacológico , Anlodipino/química , Animais , Bloqueadores dos Canais de Cálcio/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Doença Crônica/tratamento farmacológico , Liberação Controlada de Fármacos , Humanos , Hipertensão/patologia , Camundongos , Micelas , Miócitos Cardíacos/efeitos dos fármacos , Poliésteres/química , Polietilenoglicóis/química
2.
Biomaterials ; 271: 120719, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33652266

RESUMO

Carbon fibers reinforced polymers (CFRPs) are prolifically finding applications in the medical field, moving beyond the aerospace and automotive industries. Owing to its high strength-to-weight ratio, lightness and radiolucency, CFRP-based materials are emerging to replace traditional metal-based medical implants. Numerous types of polymers matrices can be incorporated with carbon fiber using various manufacturing methods, creating composites with distinct properties. Thus, prior to biomedical application, comprehensive evaluation of material properties, biocompatibility and safety are of paramount importance. In this study, we systematically evaluated a series of novel CFRPs, aiming at analyzing biocompatibility for future development into medical implants or implantable drug delivery systems. These CFRPs were produced either via Carbon Fiber-Sheet Molding Compound or Fused Deposition Modelling-based additive manufacturing. Unlike conventional methods, both fabrication processes afford high production rates in a time-and cost-effective manner. Importantly, they offer rapid prototyping and customization in view of personalized medical devices. Here, we investigate the physicochemical and surface properties, material mutagenicity or cytotoxicity of 20 CFRPs, inclusive of 2 surface finishes, as well as acute and sub-chronic toxicity in mice and rabbits, respectively. We demonstrate that despite moderate in vitro physicochemical and surface changes over time, most of the CFRPs were non-mutagenic and non-cytotoxic, as well as biocompatible in small animal models. Future work will entail extensive material assessment in the context of orthopedic applications such as evaluating potential for osseointegration, and a chronic toxicity study in a larger animal model, pigs.


Assuntos
Materiais Biocompatíveis , Polímeros , Animais , Materiais Biocompatíveis/toxicidade , Carbono , Fibra de Carbono , Camundongos , Osseointegração , Próteses e Implantes , Coelhos , Suínos
3.
Lab Chip ; 20(9): 1562-1576, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32249279

RESUMO

Patient-centered therapeutic management for chronic medical conditions is a desired but unmet need, largely attributable to the lack of adequate technologies for tailored drug administration. While triggered devices that control the delivery of therapeutics exist, they often rely on impractical continuous external activation. As such, next generation continuously tunable drug delivery systems independent of sustained external activation remain an elusive goal. Here we present the development and demonstration of a silicon carbide (SiC)-coated nanofluidic membrane that achieves reproducible and tunable control of drug release via electrostatic gating. By applying a low-intensity voltage to a buried electrode, we showed repeatable and reproducible in vitro release modulation of three model analytes. A small fluorophore (Alexa Fluor 647), a large polymer poly(sodium 4-styrenesulfonate) and a medically relevant agent (DNA), were selected as representatives of small molecule therapeutics, polymeric drug carriers, and biological therapeutics, respectively. Unlike other drug delivery systems, our technology performed consistently over numerous cycles of voltage modulation, for over 11 days. Importantly, low power consumption and minimal leakage currents were achieved during the study. Further, the SiC coating maintained integrity and chemical inertness, shielding the membrane from degradation under simulated physiological and accelerated conditions for over 4 months. Through leveraging the flexibility offered by electrostatic gating control, our technology provides a valuable strategy for tunable delivery, setting the foundation for the next generation of drug delivery systems.


Assuntos
Sistemas de Liberação de Medicamentos , Dispositivos Lab-On-A-Chip , Nanotecnologia , Poliestirenos/química , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Humanos , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA