Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Biol Chem ; 288(17): 12270-82, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23482568

RESUMO

Lipopolysaccharide (LPS) is an important pathological factor involved in serious inflammatory diseases and male reproductive impairments. Emerging evidence demonstrates that antimicrobial peptides possess protective activity in response to LPS-induced inflammation. However, the LPS-binding and/or immunosuppressive activity of ß-defensins (DEFBs) has been underestimated. In the present work, we characterized a novel human defensin, DEFB114, which was expressed predominantly in the epididymis and gingival cells at the RNA level. Homogenous recombinant DEFB114 peptides were prepared and characterized using mass spectrometry. DEFB114 protein exhibited a broad spectrum of antimicrobial activity with salt sensitivity against typical pathogenic microbes (i.e. Escherichia coli, Staphylococcus aureus, and Candida albicans). Interestingly, DEFB114 demonstrated novel LPS-binding activity in vitro and inhibited TNF-α release in RAW264.7 cultures through the inhibition of MAPK p42/44 when challenged with LPS. Moreover, DEFB114 could also rescue the LPS-induced reduction of human sperm motility in vitro and protect d-galactosamine-sensitized C57BL/6 mice from LPS-induced lethality in vivo. The protective activity of DEFB114 on RAW264.7, human sperm, and the d-galactosamine-sensitized mice was disulfide bond-dependent because alkylated DEFB114 lost its activity. The low cytotoxicity of the DEFB114 peptide toward human erythrocytes is indicative of its potential therapeutic use in the treatment of LPS-induced inflammation, LPS contamination, and potentially septic shock.


Assuntos
Lipopolissacarídeos/toxicidade , Motilidade dos Espermatozoides/fisiologia , beta-Defensinas/metabolismo , Animais , Humanos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Sepse/tratamento farmacológico , Sepse/metabolismo , Sepse/patologia , Motilidade dos Espermatozoides/efeitos dos fármacos , beta-Defensinas/farmacologia
2.
Microorganisms ; 11(3)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36985292

RESUMO

Oral hygiene and the alteration of the oral microbiome have been linked to nasopharyngeal carcinoma (NPC). This study aimed to investigate whether the oral microbiome plays a mediating role in the relationship between oral hygiene and NPC, and identify differential microbial taxonomies that potentially mediated this association. We conducted a case-control study that involved 218 NPC patients and 192 healthy controls. The 16S rRNA gene sequencing of the V4 region was performed to evaluate the composition of the oral microbiome. Mediation analysis was applied to explore the relationship among oral hygiene, the oral microbiome and NPC. We found that dental fillings and poor oral hygiene score were associated with increased risks of NPC (OR = 2.51 (1.52-4.25) and OR = 1.54 (1.02-2.33)). Mediation analysis indicated that dental fillings increased the risk of NPC by altering the abundance of Erysipelotrichales, Erysipelotrichaceae, Solobacterium and Leptotrichia wadei. In addition, Leptotrichia wadei also mediated the association between oral hygiene score and the risk of NPC. Our study confirmed that poor oral hygiene increased the risk of NPC, which was partly mediated by the oral microbiome. These findings might help us to understand the potential mechanism of oral hygiene influencing the risk of NPC via the microbiome.

3.
Adv Healthc Mater ; 5(5): 529-33, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26773963

RESUMO

Highly fluorescent polymeric nanofibers fabricated via electrospinning of PCL-DPP-PCL (photostable polycaprolactones-di(thiophene-2-yl)-diketopyrrolopyrrole-photostable polycaprolactones) and commercial PCL mixture show superior photostability and cytocompatibility for long-term tracking of cell-substrate interaction. As a proof of concept, these PCL-DPP-PCL nanofibers enable clear visualization of intricate cell-substrate interactions such as oligodendrocyte myelination.


Assuntos
Rastreamento de Células/métodos , Luz , Nanofibras/química , Polímeros/química , Alicerces Teciduais/química , Citoesqueleto de Actina/metabolismo , Animais , Fibroblastos/metabolismo , Fluorescência , Humanos , Nanofibras/ultraestrutura , Oligodendroglia/citologia , Ratos
4.
Biomaterials ; 70: 105-14, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26310106

RESUMO

Effective remyelination in the central nervous system (CNS) facilitates the reversal of disability in patients with demyelinating diseases such as multiple sclerosis. Unfortunately until now, effective strategies of controlling oligodendrocyte (OL) differentiation and maturation remain limited. It is well known that topographical and biochemical signals play crucial roles in modulating cell fate commitment. Therefore, in this study, we explored the combined effects of scaffold topography and sustained gene silencing on oligodendroglial precursor cell (OPC) development. Specifically, microRNAs (miRs) were incorporated onto electrospun polycaprolactone (PCL) fiber scaffolds with different fiber diameters and orientations. Regardless of fiber diameter and orientation, efficient knockdown of differentiation inhibitory factors were achieved by either topography alone (up to 70%) or fibers integrated with miR-219 and miR-338 (up to 80%, p < 0.05). Small fiber promoted OPC differentiation by inducing more RIP(+) cells (p < 0.05) while large fiber promoted OL maturation by inducing more MBP(+) cells (p < 0.05). Random fiber enhanced more RIP(+) cells than aligned fibers (p < 0.05), regardless of fiber diameter. Upon miR-219/miR-338 incorporation, 2 µm aligned fibers supported the most MBP(+) cells (∼17%). These findings indicated that the coupling of substrate topographic cues with efficient gene silencing by sustained microRNA delivery is a promising way for directing OPC maturation in neural tissue engineering and controlling remyelination in the CNS.


Assuntos
Técnicas de Transferência de Genes , MicroRNAs/metabolismo , Células-Tronco Neurais/citologia , Oligodendroglia/citologia , Poliésteres/química , Poliésteres/farmacologia , Animais , Biomarcadores/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Imunofluorescência , Técnicas de Silenciamento de Genes , Microscopia Eletrônica de Varredura , Células-Tronco Neurais/efeitos dos fármacos , Oligodendroglia/efeitos dos fármacos , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Alicerces Teciduais/química
5.
Tissue Eng Part A ; 20(9-10): 1379-91, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24372278

RESUMO

Mesenchymal stem cells (MSCs) have the potential to treat early intervertebral disc (IVD) degeneration. However, during intradiscal injection, the vast majority of cells leaked out even in the presence of hydrogel carrier. Recent evidence suggests that annulus puncture is associated with cell leakage and contributes to osteophyte formation, an undesirable side effect. This suggests the significance of developing appropriate carriers for intradiscal delivery of MSCs. We previously developed a collagen microencapsulation platform, which entraps MSCs in a solid microsphere consisting of collagen nanofiber meshwork. These solid yet porous microspheres support MSC attachment, survival, proliferation, migration, differentiation, and matrix remodeling. Here we hypothesize that intradiscal injection of MSCs in collagen microspheres will outperform that of MSCs in saline in terms of better functional outcomes and reduced side effects. Specifically, we induced disc degeneration in rabbits and then intradiscally injected autologous MSCs, either packaged within collagen microspheres or directly suspended in saline, into different disc levels. Functional outcomes including hydration index and disc height were monitored regularly until 6 months. Upon sacrifice, the involved discs were harvested for histological, biochemical, and biomechanical evaluations. MSCs in collagen microspheres showed advantage over MSCs in saline in better maintaining the dynamic mechanical behavior but similar performance in hydration and disc height maintenance and matrix composition. More importantly, upon examination of gross appearance, radiograph, and histology of IVD, delivering MSCs in collagen microspheres significantly reduced the risk of osteophyte formation as compared to that in saline. This work demonstrates the significance of using cell carriers during intradiscal injection of MSCs in treating disc degeneration.


Assuntos
Colágeno/química , Degeneração do Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Osteófito/patologia , Animais , Materiais Biocompatíveis/síntese química , Proliferação de Células , Células Cultivadas , Células-Tronco Mesenquimais/fisiologia , Microesferas , Coelhos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA