Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
J Am Chem Soc ; 146(35): 24330-24347, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39163519

RESUMO

Dynamic hydrogels are attractive platforms for tissue engineering and regenerative medicine due to their ability to mimic key extracellular matrix (ECM) mechanical properties like strain-stiffening and stress relaxation while enabling enhanced processing characteristics like injectability, 3D printing, and self-healing. Systems based on imine-type dynamic covalent chemistry (DCvC) have become increasingly popular. However, most reported polymers comprising aldehyde groups are based on either end-group-modified synthetic or side-chain-modified natural polymers; synthetic versions of side-chain-modified polymers are noticeably absent. To facilitate access to new classes of dynamic hydrogels, we report the straightforward synthesis of a water-soluble copolymer with a tunable fraction of pendant aldehyde groups (12-64%) using controlled radical polymerization and their formation into hydrogel biomaterials with dynamic cross-links. We found the polymer synthesis to be well-controlled with the determined reactivity ratios consistent with a blocky gradient microarchitecture. Subsequently, we observed fast gelation kinetics with imine-type cross-linking. We were able to vary hydrogel stiffness from ≈2 to 20 kPa, tune the onset of strain-stiffening toward a biologically relevant regime (σc ≈ 10 Pa), and demonstrate cytocompatibility using human dermal fibroblasts. Moreover, to begin to mimic the dynamic biochemical nature of the native ECM, we highlight the potential for temporal modulation of ligands in our system to demonstrate ligand displacement along the copolymer backbone via competitive binding. The combination of highly tunable composition, stiffness, and strain-stiffening, in conjunction with spatiotemporal control of functionality, positions these cytocompatible copolymers as a powerful platform for the rational design of next-generation synthetic biomaterials.


Assuntos
Aldeídos , Materiais Biocompatíveis , Hidrogéis , Polímeros , Hidrogéis/química , Hidrogéis/síntese química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/síntese química , Ligantes , Aldeídos/química , Polímeros/química , Polímeros/síntese química , Humanos
2.
Int J Mol Sci ; 24(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36834737

RESUMO

Poly(lactide) (PLA) and poly(ethylene glycol) (PEG)-based hydrogels were prepared by mixing phosphate buffer saline (PBS, pH 7.4) solutions of four-arm (PEG-PLA)2-R-(PLA-PEG)2 enantiomerically pure copolymers having the opposite chirality of the poly(lactide) blocks. Dynamic Light Scattering, rheology measurements, and fluorescence spectroscopy suggested that, depending on the nature of the linker R, the gelation process followed rather different mechanisms. In all cases, mixing of equimolar amounts of the enantiomeric copolymers led to micellar aggregates with a stereocomplexed PLA core and a hydrophilic PEG corona. Yet, when R was an aliphatic heptamethylene unit, temperature-dependent reversible gelation was mainly induced by entanglements of PEG chains at concentrations higher than 5 wt.%. When R was a linker containing cationic amine groups, thermo-irreversible hydrogels were promptly generated at concentrations higher than 20 wt.%. In the latter case, stereocomplexation of the PLA blocks randomly distributed in micellar aggregates is proposed as the major determinant of the gelation process.


Assuntos
Polietilenoglicóis , Polímeros , Polímeros/química , Polietilenoglicóis/química , Poliésteres/química , Micelas , Hidrogéis/química
3.
Biomacromolecules ; 21(6): 2208-2217, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32243138

RESUMO

Supramolecular and dynamic biomaterials hold promise to recapitulate the time-dependent properties and stimuli-responsiveness of the native extracellular matrix (ECM). Host-guest chemistry is one of the most widely studied supramolecular bonds, yet the binding characteristics of host-guest complexes (ß-CD/adamantane) in relevant biomaterials have mostly focused on singular host-guest interactions or nondiscrete multivalent pendent polymers. The stepwise synergistic effect of multivalent host-guest interactions for the formation of dynamic biomaterials remains relatively unreported. In this work, we study how a series of multivalent adamantane (guest) cross-linkers affect the overall binding affinity and ability to form supramolecular networks with alginate-CD (Alg-CD). These binding constants of the multivalent cross-linkers were determined via NMR titrations and showed increases in binding constants occurring with multivalent constructs. The higher multivalent cross-linkers enabled hydrogel formation; furthermore, an increase in binding and gelation was observed with the inclusion of a phenyl spacer to the cross-linker. A preliminary screen shows that only cross-linking Alg-CD with an 8-arm-multivalent guest results in robust gel formation. These cytocompatible hydrogels highlight the importance of multivalent design for dynamically cross-linked hydrogels. These materials hold promise for development toward cell- and small molecule-delivery platforms and allow discrete and fine-tuning of network properties.


Assuntos
Materiais Biocompatíveis , Hidrogéis , Alginatos , Polímeros
4.
Adv Healthc Mater ; 12(17): e2202648, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36864621

RESUMO

Digital light processing (DLP) is an accurate and fast additive manufacturing technique to produce a variety of products, from patient-customized biomedical implants to consumer goods. However, DLP's use in tissue engineering has been hampered due to a lack of biodegradable resin development. Herein, a library of biodegradable poly(esters) capped with urethane acrylate (with variations in molecular weight) is investigated as the basis for DLP printable resins for tissue engineering. The synthesized oligomers show good printability and are capable of creating complex structures with mechanical moduli close to those of medium-soft tissues (1-3 MPa). While fabricated films from different molecular weight resins show few differences in surface topology, wettability, and protein adsorption, the adhesion and metabolic activity of NCTC clone 929 (L929) cells and human dermal fibroblasts (HDFs) are significantly different. Resins from higher molecular weight oligomers provide greater cell adhesion and metabolic activity. Furthermore, these materials show compatibility in a subcutaneous in vivo pig model. These customizable, biodegradable, and biocompatible resins show the importance of molecular tuning and open up new possibilities for the creation of biocompatible constructs for tissue engineering.


Assuntos
Polímeros , Engenharia Tecidual , Humanos , Animais , Suínos , Engenharia Tecidual/métodos , Ésteres , Impressão Tridimensional
5.
Biomacromolecules ; 12(7): 2746-54, 2011 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-21630632

RESUMO

Eight-armed poly(ethylene glycol)-poly(trimethylene carbonate) star block copolymers (PEG-(PTMC)(8)) linked by a carbamate group between the PEG core and the PTMC blocks were synthesized by the metal-free, HCl-catalyzed ring-opening polymerization of trimethylene carbonate using an amine-terminated eight-armed star PEG in dichloromethane. Although dye solubilization experiments, nuclear magnetic resonance spectroscopy, and dynamic light scattering clearly indicated the presence of aggregates in aqueous dispersions of the copolymers, no physical gelation was observed up to high concentrations. PEG-(PTMC(9))(8) was end-group-functionalized using acryloyl chloride and photopolymerized in the presence of Irgacure 2959. When dilute aqueous dispersions of PEG-(PTMC(9))(8)-Acr were UV irradiated, chemically cross-linked PEG-PTMC nanoparticles were obtained, whereas irradiation of more concentrated PEG-(PTMC(9))(8)-Acr dispersions resulted in the formation of photo-cross-linked hydrogels. Their good mechanical properties and high stability against hydrolytic degradation make photo-cross-linked PEG-PTMC hydrogels interesting for biomedical applications such as matrices for tissue engineering and controlled drug delivery systems.


Assuntos
Reagentes de Ligações Cruzadas/síntese química , Dioxanos/química , Polietilenoglicóis/química , Polímeros/química , Reagentes de Ligações Cruzadas/química , Estrutura Molecular , Tamanho da Partícula , Processos Fotoquímicos , Estereoisomerismo , Propriedades de Superfície
6.
J Biomed Mater Res B Appl Biomater ; 109(1): 117-127, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32672384

RESUMO

To effectively apply microwell array cell delivery devices their biodegradation rate must be tailored towards their intended use and implantation location. Two microwell array devices with distinct degradation profiles, either suitable for the fabrication of retrievable systems in the case of slow degradation, or cell delivery systems capable of extensive remodeling using a fast degrading polymer, were compared in this study. Thin films of a poly(ethylene glycol)-poly(butylene terephthalate) (PEOT-PBT) and a poly(ester urethane) were evaluated for their in vitro degradation profiles over 34 weeks incubation in PBS at different pH values. The PEOT-PBT films showed minimal in vitro degradation over time, while the poly(ester urethane) films showed extensive degradation and fragmentation over time. Subsequently, microwell array cell delivery devices were fabricated from these polymers and intraperitoneally implanted in Albino Oxford rats to study their biocompatibility over a 12-week period. The PEOT-PBT implants shown to be capable to maintain the microwell structure over time. Implants provoked a foreign body response resulting in multilayer fibrosis that integrated into the surrounding tissue. The poly(ester urethane) implants showed a loss of the microwell structures over time, as well as a fibrotic response until the onset of fragmentation, at least 4 weeks post implantation. It was concluded that the PEOT-PBT implants could be used as retrievable cell delivery devices while the poly(ester urethane) implants could be used for cell delivery devices that require remodeling within a 4-12 week period.


Assuntos
Materiais Biocompatíveis/química , Poliésteres/química , Polietilenoglicóis/química , Poliuretanos/química , Alicerces Teciduais/química , Animais , Biodegradação Ambiental , Humanos , Técnicas In Vitro , Fenômenos Mecânicos , Testes Mecânicos , Modelos Animais , Polietilenotereftalatos/química , Próteses e Implantes , Ratos , Regeneração , Resistência à Tração , Engenharia Tecidual
7.
Adv Mater ; 33(42): e2102660, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34476848

RESUMO

Cell-matrix interactions govern cell behavior and tissue function by facilitating transduction of biomechanical cues. Engineered tissues often incorporate these interactions by employing cell-adhesive materials. However, using constitutively active cell-adhesive materials impedes control over cell fate and elicits inflammatory responses upon implantation. Here, an alternative cell-material interaction strategy that provides mechanotransducive properties via discrete inducible on-cell crosslinking (DOCKING) of materials, including those that are inherently non-cell-adhesive, is introduced. Specifically, tyramine-functionalized materials are tethered to tyrosines that are naturally present in extracellular protein domains via enzyme-mediated oxidative crosslinking. Temporal control over the stiffness of on-cell tethered 3D microniches reveals that DOCKING uniquely enables lineage programming of stem cells by targeting adhesome-related mechanotransduction pathways acting independently of cell volume changes and spreading. In short, DOCKING represents a bioinspired and cytocompatible cell-tethering strategy that offers new routes to study and engineer cell-material interactions, thereby advancing applications ranging from drug delivery, to cell-based therapy, and cultured meat.


Assuntos
Materiais Biocompatíveis/química , Mecanotransdução Celular , Animais , Materiais Biocompatíveis/metabolismo , Materiais Biocompatíveis/farmacologia , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula , Dextranos/química , Peroxidase do Rábano Silvestre/metabolismo , Humanos , Hidrogéis/química , Integrinas/metabolismo , Mecanotransdução Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Oligopeptídeos/química , Oxirredução , Tiramina/química
8.
Langmuir ; 26(15): 12890-6, 2010 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-20666421

RESUMO

The aggregation behavior and dynamics of poly(ethylene glycol) (PEG) and poly(lactide) (PLA) chains in a homologous series of eight-armed PEG-PLA star block copolymers ((PEG(65)-NHCO-PLA(n))(8) with n = 11, 13, and 15) in water at different concentrations and temperatures were studied by means of (1)H and (13)C NMR spectroscopy and (1)H longitudinal relaxation time analysis. The state of water in these systems was also investigated through the combined use of (1)H and (2)H longitudinal relaxation time measurement. On the basis of the NMR experimental findings and of dynamic light scattering measurements, (PEG(65)-NHCO-PLA(n))(8) in water can be described as self-aggregated systems with quite rigid hydrophobic domains made of PLA chains and aqueous domains where both PEG chains and water molecules undergo fast dynamics. A smaller number of rigid domains was found for (PEG(65)-NHCO-PLA(11))(8) with respect to the homologous copolymers with longer PLA chains. At low concentrations, the PLA domains are mainly formed by chains belonging to the same molecule, thus giving rise to unimolecular micelles. At intermediate concentrations, that is, above the critical association concentration (CAC) but below the critical gel concentration (CGC), nanogels are formed by interconnection of several PLA domains through shared unimers. Above the CGC, the network is extended to the entire system, giving rise to macroscopic gels. In all cases, a fraction of PLA chains remains quite mobile and exposed to water due to topological constraints of the star architecture.


Assuntos
Polietilenoglicóis/química , Polietilenoimina/química , Espectroscopia de Ressonância Magnética , Nanogéis , Espalhamento de Radiação , Temperatura
9.
Biomacromolecules ; 11(1): 224-32, 2010 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-19938809

RESUMO

Water-soluble eight-armed poly(ethylene glycol)-poly(l-lactide) star block copolymers linked by an amide or ester group between the PEG core and the PLA blocks (PEG-(NHCO)-(PLA)(8) and PEG-(OCO)-(PLA)(8)) were synthesized by the stannous octoate catalyzed ring-opening polymerization of l-lactide using an amine- or hydroxyl-terminated eight-armed star PEG. At concentrations above the critical gel concentration, thermosensitive hydrogels were obtained, showing a reversible single gel-to-sol transition. At similar composition PEG-(NHCO)-(PLA)(8) hydrogels were formed at significantly lower polymer concentrations and had higher storage moduli. Whereas the hydrolytic degradation/dissolution of the PEG-(OCO)-(PLA)(8) takes place by preferential hydrolysis of the ester bond between the PEG and PLA block, the PEG-(NHCO)-(PLA)(8) hydrogels degrade through hydrolysis of ester bonds in the PLA main chain. Because of their relatively good mechanical properties and slow degradation in vitro, PEG-(NHCO)-(PLA)(8) hydrogels are interesting materials for biomedical applications such as controlled drug delivery systems and matrices for tissue engineering.


Assuntos
Amidas/química , Ésteres/química , Hidrogéis/química , Poliésteres/química , Polietilenoglicóis/química , Polímeros/química , Materiais Biocompatíveis , Espectroscopia de Ressonância Magnética , Reologia
10.
Int J Biol Macromol ; 144: 837-846, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31715235

RESUMO

Platelet lysate (PL), a blood product that contains high concentrations of growth factors (GFs), can be considered as a cost-effective source of multiple GFs. In this study, hyaluronic acid (HA) based microgels were developed for delivery of PL proteins. Spherical microgel were prepared using a water in oil emulsion method. First, hyaluronic acid was grafted with tyramine groups, after which prepared microdroplets were crosslinked via an enzymatic reaction in the presence of hydrogen peroxide and horseradish peroxidase. Because of electrostatic interactions, these microgels are promising carriers for positively charged proteins entrapment like most of the GFs. When microgels are incubated in PL solution, protein loading takes place which is mainly governed by nonspecific adsorption of plasma proteins. Although this hampered loading efficiency, loading could be increased by repeated washing and incubation steps. The loaded microgels presented a sustained release of PL growth factors for a period of two weeks. When PL enriched microgels were embedded in a HA bulk hydrogel, cell proliferation was higher compared to constructs without microgels. These findings suggest that the developed microgels are a potential candidate for sustained delivery of PL growth factors and present a solution to the issue of their short half-lives in vivo.


Assuntos
Plaquetas/citologia , Portadores de Fármacos/química , Ácido Hialurônico/química , Microgéis/química , Engenharia Tecidual , Liberação Controlada de Fármacos , Humanos
11.
Chemistry ; 15(38): 9836-45, 2009 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-19691068

RESUMO

Synthetic routes to aluminium ethyl complexes supported by chiral tetradentate phenoxyamine (salan-type) ligands [Al(OC(6)H(2)(R-6-R-4)CH(2))(2){CH(3)N(C(6)H(10))NCH(3)}-C(2)H(5)] (4, 7: R=H; 5, 8: R=Cl; 6, 9: R=CH(3)) are reported. Enantiomerically pure salan ligands 1-3 with (R,R) configurations at their cyclohexane rings afforded the complexes 4, 5, and 6 as mixtures of two diastereoisomers (a and b). Each diastereoisomer a was, as determined by X-ray analysis, monomeric with a five-coordinated aluminium central core in the solid state, adopting a cis-(O,O) and cis-(Me,Me) ligand geometry. From the results of variable-temperature (VT) (1)H NMR in the temperature range of 220-335 K, (1)H-(1)H NOESY at 220 K, and diffusion-ordered spectroscopy (DOSY), it is concluded that each diastereoisomer b is also monomeric with a five-coordinated aluminium central core. The geometry is intermediate between square pyramidal with a cis-(O,O), trans-(Me,Me) ligand disposition and trigonal bipyramidal with a trans-(O,O) and trans-(Me,Me) disposition. A slow exchange between these two geometries at 220 K was indicated by (1)H-(1)H NOESY NMR. In the presence of propan-2-ol as an initiator, enantiomerically pure (R,R) complexes 4-6 and their racemic mixtures 7-9 were efficient catalysts in the ring-opening polymerization of lactide (LA). Polylactide materials ranging from isotactically biased (P(m) up to 0.66) to medium heterotactic (P(r) up to 0.73) were obtained from rac-lactide, and syndiotactically biased polylactide (P(r) up to 0.70) from meso-lactide. Kinetic studies revealed that the polymerization of (S,S)-LA in the presence of 4/propan-2-ol had a much higher polymerization rate than (R,R)-LA polymerization (k(SS)/k(RR)=10.1).


Assuntos
Alumínio/química , Ácido Láctico/química , Polímeros/química , Cristalografia por Raios X , Cinética , Ligantes , Conformação Molecular , Poliésteres , Estereoisomerismo
12.
Nat Commun ; 10(1): 4347, 2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31554812

RESUMO

Spatiotemporal control over engineered tissues is highly desirable for various biomedical applications as it emulates the dynamic behavior of natural tissues. Current spatiotemporal biomaterial functionalization approaches are based on cytotoxic, technically challenging, or non-scalable chemistries, which has hampered their widespread usage. Here we report a strategy to spatiotemporally functionalize (bio)materials based on competitive supramolecular complexation of avidin and biotin analogs. Specifically, an injectable hydrogel is orthogonally post-functionalized with desthiobiotinylated moieties using multivalent neutravidin. In situ exchange of desthiobiotin by biotin enables spatiotemporal material functionalization as demonstrated by the formation of long-range, conformal, and contra-directional biochemical gradients within complex-shaped 3D hydrogels. Temporal control over engineered tissue biochemistry is further demonstrated by timed presentation and sequestration of growth factors using desthiobiotinylated antibodies. The method's universality is confirmed by modifying hydrogels with biotinylated fluorophores, peptides, nanoparticles, enzymes, and antibodies. Overall, this work provides a facile, cytocompatible, and universal strategy to spatiotemporally functionalize materials.


Assuntos
Avidina/química , Materiais Biocompatíveis/química , Biotina/química , Substâncias Macromoleculares/química , Animais , Anticorpos/química , Anticorpos/metabolismo , Avidina/metabolismo , Materiais Biocompatíveis/metabolismo , Biotina/análogos & derivados , Biotina/metabolismo , Biotinilação/métodos , Linhagem Celular , Humanos , Hidrogéis/química , Hidrogéis/metabolismo , Substâncias Macromoleculares/metabolismo , Camundongos , Nanopartículas/química , Peptídeos/química , Peptídeos/metabolismo , Análise Espaço-Temporal , Engenharia Tecidual/métodos
13.
J Biomed Mater Res A ; 82(1): 160-8, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17269147

RESUMO

A new micromechanical technique was developed to study the mechanical properties of single collagen fibrils. Single collagen fibrils, the basic components of the collagen fiber, have a characteristic highly organized structure. Fibrils were isolated from collagenous materials and their mechanical properties were studied with atomic force microscopy (AFM). In this study, we determined the Young's modulus of single collagen fibrils at ambient conditions from bending tests after depositing the fibrils on a poly(dimethyl siloxane) (PDMS) substrate containing micro-channels. Force-indentation relationships of freely suspended collagen fibrils were determined by loading them with a tip-less cantilever. From the deflection-piezo displacement curve, force-indentation curves could be deduced. With the assumption that the behavior of collagen fibrils can be described by the linear elastic theory of isotropic materials and that the fibrils are freely supported at the rims, a Young's modulus of 5.4 +/- 1.2 GPa was determined. After cross-linking with glutaraldehyde, the Young's modulus of a single fibril increases to 14.7 +/- 2.7 GPa. When it is assumed that the fibril would be fixed at the ends of the channel the Young's moduli of native and cross-linked collagen fibrils are calculated to be 1.4 +/- 0.3 GPa and 3.8 +/- 0.8 GPa, respectively. The minimum and maximum values determined for native and glutaraldehyde cross-linked collagen fibrils represent the boundaries of the Young's modulus.


Assuntos
Materiais Biocompatíveis/química , Colágeno Tipo I/química , Animais , Fenômenos Biomecânicos/métodos , Bovinos , Colágeno Tipo I/ultraestrutura , Dimetilpolisiloxanos , Técnicas In Vitro , Teste de Materiais , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura
14.
J Control Release ; 190: 254-73, 2014 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-24746623

RESUMO

Over the past decades, significant progress has been made in the field of hydrogels as functional biomaterials. Biomedical application of hydrogels was initially hindered by the toxicity of crosslinking agents and limitations of hydrogel formation under physiological conditions. Emerging knowledge in polymer chemistry and increased understanding of biological processes resulted in the design of versatile materials and minimally invasive therapies. Hydrogel matrices comprise a wide range of natural and synthetic polymers held together by a variety of physical or chemical crosslinks. With their capacity to embed pharmaceutical agents in their hydrophilic crosslinked network, hydrogels form promising materials for controlled drug release and tissue engineering. Despite all their beneficial properties, there are still several challenges to overcome for clinical translation. In this review, we provide a historical overview of the developments in hydrogel research from simple networks to smart materials.


Assuntos
Preparações de Ação Retardada , Portadores de Fármacos , Hidrogéis , Materiais Biocompatíveis/história , Preparações de Ação Retardada/história , Portadores de Fármacos/química , Portadores de Fármacos/história , História do Século XX , História do Século XXI , Humanos , Hidrogéis/química , Hidrogéis/história , Polietilenoglicóis , Poli-Hidroxietil Metacrilato
15.
Macromol Biosci ; 12(4): 465-74, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22496042

RESUMO

Branched poly(methoxy-PEG acrylate) and thermally responsive poly(methoxy-PEG acrylate)-block-poly(N-isopropylacrylamide) are synthesized by RAFT polymerization. After reduction, these polymers are fluorescently labeled by reacting the free thiol groups with N-(5-fluoresceinyl)maleimide. As shown by DLS, the labeled copolymer poly(methoxy-PEG acrylate)-block-poly(N-isopropylacrylamide) forms nanoparticles at body temperature (37 °C) due to the presence of the thermosensitive poly(N-isopropylacrylamide). These materials were used as bioprobes for imaging HUVECs in vitro and chick embryo CAM in vivo. Both labeled polymer and nanoparticles are biocompatible and can be used as efficient fluorescent bioprobes.


Assuntos
Resinas Acrílicas/síntese química , Corantes Fluorescentes/síntese química , Células Endoteliais da Veia Umbilical Humana/citologia , Imagem Molecular/métodos , Polietilenoglicóis/síntese química , Polímeros/síntese química , Resinas Acrílicas/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Embrião de Galinha , Corantes Fluorescentes/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/fisiologia , Espectroscopia de Ressonância Magnética , Maleimidas/química , Nanopartículas/química , Oxirredução , Polietilenoglicóis/farmacologia , Polímeros/farmacologia , Coloração e Rotulagem , Temperatura
16.
Biomaterials ; 33(14): 3651-61, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22349290

RESUMO

In situ gelating dextran-tyramine (Dex-TA) injectable hydrogels have previously shown promising features for cartilage repair. Yet, despite suitable mechanical properties, this system lacks intrinsic biological signals. In contrast, platelet lysate-derived hydrogels are rich in growth factors and anti-inflammatory cytokines, but mechanically unstable. We hypothesized that the advantages of these systems may be combined in one hydrogel, which can be easily translated into clinical settings. Platelet lysate was successfully incorporated into Dex-TA polymer solution prior to gelation. After enzymatic crosslinking, rheological and morphological evaluations were performed. Subsequently, the effect of platelet lysate on cell migration, adhesion, proliferation and multi-lineage differentiation was determined. Finally, we evaluated the integration potential of this gel onto osteoarthritis-affected cartilage. The mechanical properties and covalent attachment of Dex-TA to cartilage tissue during in situ gel formation were successfully combined with the advantages of platelet lysate, revealing the potential of this enhanced hydrogel as a cell-free approach. The addition of platelet lysate did not affect the mechanical properties and porosity of Dex-TA hydrogels. Furthermore, platelet lysate derived anabolic growth factors promoted proliferation and triggered chondrogenic differentiation of mesenchymal stromal cells.


Assuntos
Materiais Biocompatíveis , Plaquetas/química , Cartilagem/crescimento & desenvolvimento , Condrogênese/fisiologia , Dextranos , Fenômenos Biomecânicos , Plaquetas/fisiologia , Adesão Celular , Diferenciação Celular , Movimento Celular , Condrócitos/efeitos dos fármacos , Condrócitos/fisiologia , Condrogênese/efeitos dos fármacos , Técnicas de Cocultura , Substâncias de Crescimento/administração & dosagem , Humanos , Hidrogéis , Teste de Materiais , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/fisiologia , Microscopia Eletrônica de Varredura , Osteoartrite/patologia , Osteoartrite/fisiopatologia , Osteoartrite/terapia , Engenharia Tecidual , Tiramina
17.
Tissue Eng Part A ; 16(8): 2429-40, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20214454

RESUMO

Enzymatic crosslinking of dextran-tyramine (Dex-TA) conjugates in the presence of horseradish peroxidase and hydrogen peroxide was successively applied in the preparation of hydrogels. Depending on the molecular weight of the dextran (M(n,) (GPC) of 14000 or 31000 g/mol) and the degree of substitution (of 5, 10, or 15) with TA groups, the gelation times ranged from 20 s to 1 min. Hydrogels prepared from Dex31k-TA with a degree of substitution of 10 had storage moduli up to 60 kPa. Similar values were found when chondrocytes were incorporated into the hydrogels. Chondrocyte-seeded Dex-TA hydrogels were prepared at a molar ratio of hydrogen peroxide/TA of 0.2 and cultured in a chondrocyte medium. A live-dead assay and a methylthiazol tetrazolium assay revealed that almost all chondrocytes retained their viability after 2 weeks. Scanning electron microscopy analysis showed that the encapsulated chondrocytes were capable of maintaining their round shape. Histology and immunofluorescent staining demonstrated the production of glycosaminoglycans (GAGs) and collagen type II after culturing for 14 and 21 days. Biochemical analysis showed that GAG accumulation increased with time inside Dex-TA hydrogels. Besides, GAG/DNA for Dex-TA hydrogels was higher than that for agarose at day 28. These results indicate that Dex-TA hydrogels are promising 3D scaffolds for cartilage tissue engineering applications.


Assuntos
Cartilagem/citologia , Cartilagem/crescimento & desenvolvimento , Condrócitos/enzimologia , Condrócitos/transplante , Dextranos/química , Alicerces Teciduais , Tiramina/química , Absorção , Animais , Materiais Biocompatíveis/química , Bovinos , Células Cultivadas , Condrócitos/citologia , Reagentes de Ligações Cruzadas/química , Desenho de Equipamento , Análise de Falha de Equipamento , Matriz Extracelular/química , Hidrogéis/química , Injeções , Teste de Materiais , Engenharia Tecidual/instrumentação
18.
Tissue Eng Part A ; 16(2): 565-73, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19737051

RESUMO

Cartilage tissue engineering, in which chondrogenic cells are combined with a scaffold, is a cell-based approach to regenerate damaged cartilage. Various scaffold materials have been investigated, among which are hydrogels. Previously, we have developed dextran-based hydrogels that form under physiological conditions via a Michael-type addition reaction. Hydrogels can be formed in situ by mixing a thiol-functionalized dextran with a tetra-acrylated star poly(ethylene glycol) solution. In this article we describe how the degradation time of dextran-poly(ethylene glycol) hydrogels can be varied from 3 to 7 weeks by changing the degree of substitution of thiol groups on dextran. The degradation times increased slightly after encapsulation of chondrocytes in the gels. The effect of the gelation reaction on cell viability and cartilage formation in the hydrogels was investigated. Chondrocytes or embryonic stem cells were mixed in the aqueous dextran solution, and we confirmed that the cells survived gelation. After a 3-week culturing period, chondrocytes and embryonic stem cell-derived embryoid bodies were still viable and both cell types produced cartilaginous tissue. Our data demonstrate the potential of dextran hydrogels for cartilage tissue engineering strategies.


Assuntos
Cartilagem/efeitos dos fármacos , Cartilagem/fisiologia , Reagentes de Ligações Cruzadas/farmacologia , Dextranos/farmacologia , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacologia , Polietilenoglicóis/farmacologia , Engenharia Tecidual/métodos , Animais , Bovinos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Condrócitos/citologia , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Condrogênese/efeitos dos fármacos , Dextranos/química , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Glicosaminoglicanos/metabolismo , Teste de Materiais , Camundongos , Polietilenoglicóis/química
20.
Biomacromolecules ; 8(5): 1548-56, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17425366

RESUMO

Thiol-functionalized dextrans (dex-SH) (M(n,dextran) = 14K or 31K) with degrees of substitution (DS) ranging from 12 to 25 were synthesized and investigated for in situ hydrogel formation via Michael type addition using poly(ethylene glycol) tetra-acrylate (PEG-4-Acr) or a dextran vinyl sulfone conjugate with DS 10 (dex-VS DS 10). Dex-SH was prepared by activation of the hydroxyl groups of dextran with 4-nitrophenyl chloroformate and subsequent reaction with cysteamine. Hydrogels were rapidly formed in situ under physiological conditions upon mixing aqueous solutions of dex-SH and either PEG-4-Acr or dex-VS DS 10 at polymer concentrations of 10 to 20 w/v%. Rheological studies showed that these hydrogels are highly elastic. By varying the DS, concentration, dextran molecular weight, and type of cross-linker, hydrogels with a broad range of storage moduli of 9 to 100 kPa could be obtained. Varying the ratio of thiol to vinyl sulfone groups from 0.9 to 1.1 did not alter the storage modulus of the hydrogels, whereas larger deviations from equimolarity (thiol to vinyl sulfone ratios of 0.75 and 1.5) considerably decreased the storage modulus. The plateau value of hydrogel storage modulus was reached much faster at pH 7.4 compared to pH 7, due to a higher concentration of the thiolate anion at higher pH. These hydrogels were degradable under physiological conditions. Degradation times were 3 to 7 weeks for dex-SH/dex-VS DS 10 hydrogels and 7 to over 21 weeks for dex-SH/PEG-4-Acr hydrogels, depending on the DS, concentration, and dextran molecular weight.


Assuntos
Dextranos/química , Hidrogéis/síntese química , Polietilenoglicóis/química , Compostos de Sulfidrila/química , Dextranos/síntese química , Hidrogéis/química , Reologia , Compostos de Sulfidrila/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA